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Machine Learning  
in Agricultural and Applied Economics  

 
Abstract 
This review presents machine learning (ML) approaches from an applied economist’s perspective. 
We first introduce key ML methods drawing connections to econometric practice. We then identify 
current limitations of the econometric and simulation model toolbox in applied economics and 
explore potential solutions afforded by ML. We dive into cases like inflexible functional forms, 
unstructured data sources, large number of explanatory variables in both prediction and causal 
analysis, and highlight challenges of complex simulations models. Finally, we argue that 
economists have a vital role in addressing the shortcomings of ML when used for quantitative 
economic analysis.  
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1. Introduction 
Machine learning (ML) offers great potential for expanding the applied economist’s toolbox. 
Recent overview papers have pointed to the potential for big data and ML to improve farm 
management (Coble et al., 2018; Kamilaris and Prenafeta-Boldú, 2018; Raj et al., 2015; Shekhar 
et al., 2017) and economic analysis more broadly (Athey and Imbens, 2016; Bajari et al., 2015; 
Einav and Levin, 2014; Grimmer, 2015; Monroe et al., 2015; Varian, 2014). ML tools are beginning 
to be employed in economic analysis (Athey, 2018; Crane-Droesch, 2017; März et al., 2016), 
while some researchers raise concerns about their transparency, interpretability and use for 
identifying causal relationships (Lazer et al., 2014). In this review paper, we introduce ML to 
applied economists by placing it in the context of standard econometric and simulation methods. 
We identify shortcomings of current methods used in agricultural and applied economics, and 
discuss both the opportunities and challenges afforded by ML to supplement our existing 
approaches. 
 
What is ML? The terms ML, artificial intelligence (AI) and deep learning (DL) are often used 
interchangeably. ML is part of artificial intelligence which in turn is a discipline in computer 
science. ML aims to learn from data using statistical methods. DL is a specific subset of ML that 
uses a hierarchical approach, where each step converts information from the previous step into 
more complex representations of the data (Goodfellow et al., 2016). Many of the newest advances 
in machine learning are in the area of DL (LeCun et al., 2015).  
 
Why introduce ML to agricultural and applied economics now? First, data availability has 
dramatically increased in many different areas, including agriculture, environment and 
development (Coble et al., 2018; Shekhar et al., 2017). Along with helping process data from 
these novel sources, ML methods are well equipped to exploit large volumes of data more 

https://paperpile.com/c/pOrzXn/qpcAD+9PZkM+j2yqX+Tx00X
https://paperpile.com/c/pOrzXn/qpcAD+9PZkM+j2yqX+Tx00X
https://paperpile.com/c/pOrzXn/AqVzb+KBqUk+Xe99p+HaTnj+C1N4X+cXKMv
https://paperpile.com/c/pOrzXn/AqVzb+KBqUk+Xe99p+HaTnj+C1N4X+cXKMv
https://paperpile.com/c/pOrzXn/GXyVE+B4jXX+ZxGRj
https://paperpile.com/c/pOrzXn/waK4U
https://paperpile.com/c/pOrzXn/3PuiJ
https://paperpile.com/c/pOrzXn/TSCoB
https://paperpile.com/c/pOrzXn/9PZkM+qpcAD


3 

efficiently than traditional statistical methods. Second, since the early 2000s, the use of multi-
processor graphic cards (graphic processing unit, or GPU) has greatly sped up computer learning 
(Schmidhuber, 2015) and many ML methods can be parallelized and exploit the potential of 
GPUs. Third, the ML/DL research community from both academia and industry is rapidly 
developing the tools users need to apply these methods. Researchers have developed and 
improved algorithms that push the boundaries of ML/DL (Schmidhuber, 2015). The community 
has a strong open source tradition, including powerful DL libraries (e.g. tensorflow.org, 
pytorch.org) and pretrained models (e.g. VVGNet, ResNet), increasing the potential for adoption. 
Last but not least, economists have begun to realize that the predictive power of ML methods 
may not only be used as such, but can also improve causal identification (Athey, 2018).  
 
How can ML be helpful for agricultural and applied economics? Our models often contain little 
prior information about functional form, have large potential heterogeneity across units of 
observation and frequently have multiple outputs. For example, imagine one wants to estimate 
the effect of a fertilizer subsidy on the yield of crops. Yield is determined by a complex combination 
of soil quality, weather, inputs, input timing and other management choices, replete with non-
linearities and interactions. Or suppose one wants to ask how subsidies affect farm structure, 
where both policy and structure may be complex, and multidimensional. In demand system 
estimation, one might have access to daily, product-level scanner data, or data on housing sales 
to estimate preferences for local amenities, or one may want to estimate the effect of pollution on 
multiple measures of health. While our traditional methods have allowed us to approach these 
questions, ML increases the flexibility with respect to both data and functional form, as well as 
processing efficiency, opening up other avenues for analysis.  
 
Often ML approaches are perceived as something special or even mysterious, potentially due to 
associated terms such as AI, neural networks (NN), or DL, that create associations with human 
intelligence. As we lay out in section 2, ML tools are ‘just’ statistical tools and in many ways are a 
natural extensions of the econometric toolbox. In the next section we introduce central ML 
approaches, not aiming for textbook coverage, but rather to present them from an applied 
econometric perspective highlighting similarities and differences with our traditional methods. One 
distinction is that ML focuses primarily on the predictive accuracy and forecast errors while 
econometricians focus on deriving statistical properties of estimators for hypothesis testing (see 
also Mullainathan and Spiess, 2017). In section 2.1 we present the ML approach to predictive 
accuracy and to control for overfitting. We also present central supervised learning approaches 
for regression tasks (section 2.2) and unsupervised learning approaches for dimensionality 
reduction (section 2.3). Often there are concerns about ML models being a ‘black box’ and we 
reflect on the tradeoff between model complexity versus interpretability in section 2.4, including 
tools to help interpret ML models.  
 
Section 3 then takes a closer look at limitations of our current set of econometric tools and 
simulation methods, and explores to what extent ML approaches can overcome them. We frame 
this section in terms of current challenges faced in applied economic analysis; while there may 
be some overlap in the ML solutions, the problems being addressed are different. Functional 
forms employed in econometric analysis often lack theoretical grounding and are not sufficiently 

https://paperpile.com/c/pOrzXn/haIM9
https://paperpile.com/c/pOrzXn/haIM9
https://paperpile.com/c/pOrzXn/ZxGRj
https://paperpile.com/c/pOrzXn/5BmNW/?prefix=see%20also
https://paperpile.com/c/pOrzXn/5BmNW/?prefix=see%20also
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flexible to capture the multiple interactions, nonlinearities and heterogeneity so common to 
biological or social processes in agricultural and environmental systems. ML tools allow for highly 
flexible estimation, address model uncertainty and efficiently deal with large sample sizes (chapter 
3.1). Our current methods limit the full use of novel unstructured data sources, such as remote 
sensing images, cellular phone records or text from news and social media. ML approaches may 
reduce the reliance on limited ‘hand-crafted’ features to make better use of the available data 
(chapter 3.2). Similarly, ML offers opportunities in situations in which we have a very large number 
of potential explanatory variables or observe explanatory variables at high temporal or spatial 
resolution for which our current approaches to aggregate data into a standard panel form implies 
loss of information (chapter 3.3). One common objection from economists is that ML tools are of 
only of limited use as they focus on prediction while economists are primarily interested in 
answering causal questions. While it is true that ML tools are primarily developed for prediction, 
there are recent contributions, particularly from economists, that exploit the prediction capabilities 
of ML tools for causal inference. We provide an overview of these approaches and how they can 
help to overcome limitations of the current tools for causal inference (chapter 3.4). Beyond 
enhancing econometric methods, ML can help alleviate current constraints of simulation models. 
Partial or general equilibrium models or Agent Based Models (ABMs) are often computationally 
limited in their degree of complexity. Further, empirical calibration of equilibrium models or ABMs 
is challenging. ML methods are beginning to be employed to overcome these computational 
limitations and to improve calibration (chapter 3.5). In section 4, we discuss potential limitations 
of ML approaches and what economists can add to overcome these limitations. Finally, we identify 
some relevant frontier developments in ML for economic analysis (section 5).  
 
While some of the issues reviewed in this paper have been raised in the general economics 
literature, and several authors have already highlighted the potential of ‘big data’ for agricultural 
economics, no overview on the existing and potential applications of ML methods for agricultural 
and applied economics analysis yet exists. We believe these methods hold particular promise for 
researchers in our field due to the frequent linkages with complex biological or physical processes, 
uses of non-traditional data sources such as those derived from remote sensing and the frequent 
use of simulation methods. While, like other reviews, we briefly introduce ML methods, we do so 
from the perspective of our standard econometric and simulation tools to aid understanding and 
appropriate application. Unlike earlier reviews, we highlight how ML tools can fill gaps in our 
existing methodological tool box, focusing on what long standing challenges they can solve. We 
place particular emphasis on NNs because despite holding significant potential for capturing 
complex spatial and temporal relationships, they are still not greatly used in economic analysis. 
Further, we review the application of ML tools in policy simulation, which, to our knowledge has 
not yet been extensively covered. We hope that relating ML methods to our current approaches 
and their shortcomings will allow this paper to serve as a guide for applied economists interested 
in expanding their methodological toolbox.  

2. ML from an applied econometrics perspective 
We begin this review by briefly introducing ML concepts, terminology and approaches. Our 
intention is not to give these topics a rigorous treatment, but instead to provide an intuitive 
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introduction from a practitioner's perspective, laying out high-level connections to traditional 
econometric approaches, and to identify both the potential and limitations for empirical 
applications. Traditionally, ML and econometric approaches have different objectives. ML 
approaches are primarily intended for prediction tasks with the aim to obtain accurate predictions, 
while in econometrics we are usually interested in obtaining reliable estimates of marginal effects. 
This difference has important implications. For example, when the ML community refers to bias, 
variance or mean squared error (MSE), they are defined in terms of the prediction, i.e. the aim is 
to have an precise and unbiased prediction. While in econometrics we are usually interested in 
obtaining unbiased/consistent estimates of the coefficients. Importantly, a model that is unbiased 
in terms of the prediction might not necessarily be unbiased in terms of the coefficients. Another 
important difference is that in econometrics we are able to derive uncertainty estimates of the 
estimated coefficients and hence can use the estimates for hypothesis testing. Uncertainty 
estimates are usually not obtained for ML methods, which is a substantial limitation of the 
approach, and is an area of active research (see section 5).  

2.1.  Regularization/Train-Validation-Test split approach to avoid overfitting  

For prediction tasks, we aim to estimate models that generalize well, meaning that the estimated 
model generates accurate predictions for observations outside the employed sample. Models 
need to learn general relationships from the data but avoid ‘overfitting’, i.e. avoid learning aspects 
of the given sample that do not generalize to the population. Limiting overfitting is particularly 
important given the many parameters or non-parametric nature, and thus high flexibility, of many 
ML methods, which allows to fit very specific (nonlinear) relationships in the data. 
  
In traditional econometrics, we are concerned about having “sufficient” degrees of freedom, where 
more degrees of freedom reduce the standard errors around any single estimated coefficient. This 
approach inherently restricts the number of covariates (given a finite ‘N’), and thus limits the 
flexibility of a model. In the ML community, degrees of freedom are not explicitly considered and 
often ML methods contain a very large number of parameters and potentially negative degrees of 
freedom. In ML, limiting overfitting is typically done via regularization. Regularization in ML terms, 
controls the complexity (or capacity) of a model. Intuitively, the complexity of a model describes 
its ability to approximate a wide variety of functions. With increasing complexity, i.e. less 
regularization, the risk of overfitting increases, while less complex, more regularized, models 
might lead to underfitting (Goodfellow et al., 2016, pp. 107–117; Hastie et al., 2009, pp. 219–223). 
In econometrics, the concern about overfitting is frequently overshadowed by the goal of obtaining 
accurate coefficient estimates. Regularization often comes in the form of the selection of a 
parsimonious number of variables and the use of specific functional forms, without explicitly 
controlling for overfitting.  
 
When regularizing a model one needs to make a trade-off between bias and variance, where in 
prediction tasks, bias and variance refers to the prediction. Highly regularized (i.e. less complex, 
less flexible) models tend to have high (prediction) bias but low variance. As an extreme case of 
regularization, think about predicting the outcome to be a constant, irrespective of explanatory 
variables. Less regularized, highly complex models tend to have low bias but high variance. 

https://paperpile.com/c/pOrzXn/3PuiJ+mBa9/?locator=107-117,219-223
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Because MSE is the sum of squared bias and variance, the trade-off between bias and variance 
is embedded in minimizing the MSE as the criterion for model selection.  
 
One standard ML approach to find the appropriate level of model complexity is to split the 
available data set into a training, validation, and test set (see Hastie et al. (2009), section 7 or 
Goodfellow et al. (2016) section 5.3 for a textbook coverage, providing the basis for this section). 
The training set is used for estimation, called ‘training’ the model, and the validation set, also 
called development, or hold-out set, is used to monitor the out-of-sample prediction error. The 
out-of-sample prediction error, or the prediction error in the validation set, is monitored for different 
model specifications and different levels of model complexity. The model with the lowest out-of-
sample prediction error in the validation set is then selected. The test set is then finally used to 
assess the out-of-sample prediction error of the selected model. Thus, it is important that the test 
set is neither used for training nor for model selection.  
 
The train/validation/test approach can easily be applied in a data rich environment where setting 
aside a portion of the data is not a problem. When datasets are smaller, a common variation of 
the train/validation/test split approach is k-fold cross validation. This approach calculates the 
expected out-of-sample prediction error along with an estimate of the the standard error of the 
out-of-sample prediction error in an iterative way. The general approach is to split the sample in 
k parts, each with equal number of observations.1 Using these splits, we then estimate our chosen 
model k times; each time we use all the data except one of the k parts that we leave out. This left-
out part is then used to derive the out-of sample prediction error. By averaging the out-of-sample 
prediction error over the k estimators, we obtain an estimate of the expected value of the out-of-
sample prediction error.  
 
In ML, k-fold cross validation is frequently used for model selection, or to select tuning parameters 
of a specific estimator (such as the learning rate of the numerical optimizer or the number and 
layer/neurons in a NN, discussed below). Cross validation is performed for each of the possible 
models or a range of tuning parameters as described above. The model/tuning parameters with 
the lowest expected out-of sample prediction error is then chosen as the final model. The final 
model is then estimated using the entire data set. It is interesting to contrast the cross validation 
or train/validation/test approach in ML, with the typical econometric approach to model selection, 
where variables may be given by theory, or criteria like AIC or BIC are used.2 Typically, in 
econometric forecasting, we tend to drop observations to measure the prediction error of our 
chosen model; not as part of a systematic model selection process. Conversely, this is part and 
parcel of ML methods. 

                                                 
1 In a simple cross section, splitting the data by random draw is straightforward; when dealing with 
time or spatially dynamic models one needs to take into account the data structure and the objective 
of the prediction task in order to decide on the most appropriate way to split the data. 

2 One possible exception is the use of cross-validation for the selection of bandwidth in non-
parametric kernel estimation, which is similar to the uses of the validation set in ML. 

https://paperpile.com/c/pOrzXn/mBa9/?noauthor=1
https://paperpile.com/c/pOrzXn/3PuiJ/?noauthor=1
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2.2.   Supervised approaches 

Supervised approaches characterize methods to estimate the conditional expectation of a 
dependent variable, or target in ML terms, given explanatory variables, called features. Hence, 
supervised approaches include classical linear or limited dependent variable regression models. 
While a large variety of supervised ML approaches exist, we restrict ourselves to shrinkage 
methods, tree based methods and neural networks, which hold particular relevance for applied 
economics.  

2.2.1. Shrinkage methods 
Shrinkage methods such as Ridge regression or Lasso are linear regression models that add a 
penalty term to the size of the coefficients, pushing coefficients towards zero. They can be used 
for prediction of continuous outcomes or classification and can efficiently be used on data sets 
with large numbers of explanatory variables. For coefficients to deviate from zero, variables have 
to substantially contribute to predictive power. The extent of shrinkage or regularization can be 
tuned, where the optimal level is typically determined using cross-validation (see Varian (2014) 
for a brief discussion or Hastie et al. (2009) for a more detailed exposition).  
 
For the econometrician who is largely interested in finding the “true” model and interpreting 
regression coefficients, newer variations of the Lasso may be of specific interest.  These new 
variations close in on the so called ‘oracle’ property that offers good properties of model selection 
and coefficient estimation. One promising approach is the OLS post-Lasso estimation ((i.e. the 
penalty term pushing some coefficients to zero; Belloni and Chernozhukov, 2013). For a broader 
and more rigorous treatment of inference with Lasso, including the oracle property and relevant 
sparsity conditions we refer to Tibshirani et al. (2015). 

2.2.2. Tree based methods 
Decision trees can be used for both classification and regression. They use linear splits to partition 
the feature space (i.e. the space spanned by the explanatory variables), to maximize the 
homogeneity within the partitions created by each split, with the end of the sequential splits called 
‘leaves’. Once the tree is ‘grown’, one can use it to predict an outcome based on which side of 
each sequential split that observation’s covariates fall, i.e. which ‘leaf’ it populates. The depth of 
a tree describes the number of splits, or nodes. Each split is sequentially chosen based on its 
contribution to the loss function. Trees are a useful tool for applied economists because they can 
easily be interpreted and are well suited to capture highly nonlinear relationships. A disadvantage 
of trees is that they can be unstable and prone to overfitting, such that small changes in the data 
lead to substantial changes in splits. Even though they are well equipped to capture non-
linearities, they are limited in capturing trully linear or smooth functions since, by construction, the 
resulting model is a step function. However, with sufficient data they can approximate any linear 
or smooth function arbitrarily well, and, importantly, without the need to assume an underlying 
structure ex-ante. 
 
Ensemble approaches such as random forests or gradient boosted trees combine the results of 
multiple trees in order to improve prediction accuracy and to reduce variance, at the cost of easy 

https://paperpile.com/c/pOrzXn/AqVzb/?noauthor=1
https://paperpile.com/c/pOrzXn/mBa9/?noauthor=1
https://paperpile.com/c/pOrzXn/0DPY/?prefix=i.e.%20the%20penalty%20term%20pushing%20some%20coefficients%20to%20zero%3B
https://paperpile.com/c/pOrzXn/0DPY/?prefix=i.e.%20the%20penalty%20term%20pushing%20some%20coefficients%20to%20zero%3B
https://paperpile.com/c/pOrzXn/trm3/?noauthor=1
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interpretability. Random forests average the results of many deep trees grown on random 
subsamples of observations, and subsets of variables. Random forests can be thought of as being 
related to kNN methods with adaptive weighting (Lin and Jeon, 2006), where the predicted 
outcome of an out of sample observation is given by its neighbours defined by a weighting of its 
characteristics. Gradient boosted trees are additive models consisting of the sum of trees trained 
by repeatedly fitting shallow trees on the residuals (Efron and Hastie, 2016, p. 324). Given their 
additive structure, boosted trees are closely related to Generalized Additive Models (GAMs) in 
traditional econometrics. However, estimation of GAMs is less efficient than gradient boosting 
when working with a large number of explanatory variables. These methods are currently among 
the most effective prediction techniques applied in many different areas (Efron and Hastie, 2016, 
p. 347; Hastie et al., 2009). Efron and Hastie (2016) argue that these methods are well suited as 
an “off-the-shelf” ML prediction approach given their advantages to detect highly nonlinear 
relationships, process quantitative and categorical data, are robust to highly non-normal data or 
outliers, provide an algorithmic treatment of missing data, irrelevant variables and consequently 
require relatively little preprocessing of the input data and comparatively little tuning during 
training. Additionally, they provide a ranking of the importance of each explanatory variable.  

2.2.3. Neural networks 
Next to tree-based methods, NNs are the most widely used, effective supervised ML approaches 
currently available. Sarle (1994) provides an early comparison between NNs and statistical 
models, including a overview of ML jargon. Goodfellow et al. (2016) provide a recent textbook on 
NNs, particularly deep neural networks (DNN), which is the basis for this section. As with any 
other supervised approach, including a classical regression, NNs are simply a mapping 𝒚𝒚 =
𝑓𝑓(𝒙𝒙;𝜃𝜃) from an input vector 𝑥𝑥 to an output vector 𝒚𝒚, governed by unknown parameters 𝜃𝜃. 
Characteristically, the mapping consists of layers building a chain like structure of functions. A 

network with three layers would look like: 𝑦𝑦 =  𝑓𝑓(𝒙𝒙) = 𝑓𝑓 (3) � 𝑓𝑓(2) �𝑓𝑓(1)(𝒙𝒙)��. Deep neural 

networks refer to a NN with many layers. In a fully connected (or dense) NN, each layer has a 
structure given by 𝑓𝑓(𝑘𝑘)(𝑥𝑥) = 𝒉𝒉(𝑘𝑘) = 𝑔𝑔(𝑘𝑘)�𝑾𝑾(𝑘𝑘)⊤𝒉𝒉(𝑘𝑘−1) + 𝒃𝒃 (𝑘𝑘)�, with 𝒉𝒉(0) = 𝒙𝒙, where 𝑊𝑊(𝑘𝑘) is a 
matrix of unknown parameters and 𝑏𝑏(𝑘𝑘) is a column vector of basis factors (similar to a constant 
in a regression). The column dimension of 𝑊𝑊(𝑘𝑘) (or row dimension of 𝑏𝑏(𝑘𝑘)) specifies the size or 
number of neurons in each layer. The dependent variable, 𝑦𝑦, can include multiple jointly-predicted 
characteristics per observation. Typical choices for the activation function 𝑔𝑔(𝑘𝑘)are a rectified linear 
unit (relu) or a tanh transformation function. The weights of the NN are trained by minimizing a 
loss function, such as mean squared error for regression or cross-entropy for classification. Note 
both linear and logit regression are special cases of a NN, when the NN has only one layer, 𝑦𝑦 is 
of dimension one and we use a linear or logistic activation function, respectively. From this 
perspective, NNs are already widely used in our profession!3  
 
While there are many NN architectures, the two most relevant for economists are convolutional 
neural networks (CNN) and recurrent neural networks (RNN). CNNs are well placed to process 

                                                 
3 See also Hastie et al. (2009) for laying out the similarities between projection pursuit 

regression and neural networks.  

https://paperpile.com/c/pOrzXn/qKu7
https://paperpile.com/c/pOrzXn/Y9hO3/?locator=324
https://paperpile.com/c/pOrzXn/mBa9+Y9hO3/?locator=,347
https://paperpile.com/c/pOrzXn/mBa9+Y9hO3/?locator=,347
https://paperpile.com/c/pOrzXn/Y9hO3/?noauthor=1
https://paperpile.com/c/pOrzXn/n01H/?noauthor=1
https://paperpile.com/c/pOrzXn/3PuiJ/?noauthor=1
https://paperpile.com/c/pOrzXn/mBa9/?noauthor=1
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grid-like data such as 1D time-series data or 2D image data. CNNs get their name from the use 
of a convolutional operator in at least one of their layers, which is then called a convolutional layer. 
In a fully connected (dense) neural network, every unit in a hidden or output layer is connected to 
every unit (neuron) in the previous layer by the matrix multiplication 𝑾𝑾(𝑘𝑘)⊤𝒉𝒉(𝑘𝑘−1). In a 
convolutional layer, by contrast, each unit looks only at a small fraction of units from the previous 
layer (thus, a sparse interconnection) and uses the same parameters at different locations 
(parameter sharing), thereby significantly reducing the number of parameters it needs to estimate. 
Intuitively, a convolutional layer in a time series model can be thought of as a collection of filters 
that are shifted across the time sequence, for example, one filter that detects cyclical behaviour, 
and another that calculates a moving average. A crucial distinction between CNNs and classical 
time series models is that CNNs learn the parameters of the filter i.e. the features that are useful 
to extract. In an image processing application, for example, a filter may learn to detect vertical 
edges in small locations of the image, while another filter detects horizontal edges, corners, and 
curved lines. Each filter is then moved across the image to create a feature map (one from each 
filter) specifying where the features are present in the image. The next convolutional layer then 
combines the features (edges, corners etc.) into more complex structures (e.g. an eye, mouth, or 
nose), providing maps of those features.  
 
RNNs are an alternative to CNNs for processing sequential data, handling dynamic relationships 
and long-term dependencies. RNNs, particularly RNNs employing Long Short Term Memory 
(LSTM) cells, gained popularity and led to important advances in natural language processing 
(machine translation, speech recognition or speech synthesis (Schmidhuber, 2015)). The crucial 
feature of such RNN-LSTM models is that past information is carried across time using a cell state 
vector. During each time step, new incoming explanatory variables are encoded and combined 
with the past information in the cell state vector. Importantly the model itself learns 1) in which 
way information is encoded and 2) which encoded information can be forgotten (i.e. is not 
important for the prediction of later steps). As with CNNs, this approach differs from a classical 
AR process as it does not require the analyst to specify the lag structure and can capture more 
complex relationships. RNNs and CNNs both leverage the idea of parameter sharing which allows 
them to detect a certain pattern irrespective of the pattern’s location in a sequence or image. Both 
can be applied in a context of either very long time series or in a panel context with many short 
time series. 

2.3.  Unsupervised approaches 

Along with prediction, another common use of ML is data grouping or clustering based on the 
characteristics of observations. Unsupervised approaches aim to discover the joint probability of 
(x) instead of E(y|x). Hence, they can be applied in situations where we lack labels, i.e. where we 
only have explanatory variables (features) and no dependent variable (outcome or label). These 
approaches are often used to reduce the dimensionality of data. Principal Component Analysis 
(PCA) is an unsupervised learning approach familiar to econometricians. These methods can also 
be applied to pre-define logical groupings of data for subsequent analysis, similar to cluster 
analysis, or to generate an outcome of interest, such as defining the ‘topic’ of a news article. 
 

https://paperpile.com/c/pOrzXn/haIM9
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As the number of potential descriptors increases, reducing dimensionality becomes more 
important. Unsupervised learning can also be applied to pre-train neural networks (see below). In 
these settings, the primary goal is to learn relevant relationships in the unlabeled data which can 
then be used in a second step for a supervised learning task.  
 
Traditional dimensionality reduction approaches such as PCA rely on linear partitions of the 
variable space. ML approaches such as Autoencoders facilitate nonlinear unsupervised learning. 
In general, an autoencoder is a NN consisting of an encoder and a decoder function. The encoder 
aims to map the inputs, 𝑥𝑥 to an internal representation, ℎ = 𝑓𝑓(𝑥𝑥), while the decoder, 𝑔𝑔, maps the 
internal representation ℎ, to a reconstructed input 𝑟𝑟 = 𝑔𝑔(ℎ), where 𝑟𝑟 should be as close as 
possible to the input 𝑥𝑥. Usually restrictions are placed on the function ℎ, such that the autoencoder 
cannot simply copy 𝑥𝑥 to 𝑟𝑟. Autoencoders can be interpreted as a non-linear generalization of PCA 
(Hinton and Salakhutdinov, 2006). 
 
Typically, autoencoders are simply fully connected neural networks, with the twist that the outputs 
are their own inputs, making them an unsupervised approach. While copying input data to itself 
is not helpful on its own, restricting the internal layers of the neural net can provide an useful 
encoding of the data. For example, undercomplete autoencoders set the dimension of ℎ to be 
lower than the dimension of 𝑥𝑥. Thus, the autoencoder is forced to learn an internal representation 
of 𝑥𝑥 in a lower dimensional space. To be successful, the NN needs to be able to compress data 
with minimal information loss, by capturing only the most important features of 𝑥𝑥. Regularized 
autoencoders or denoising autoencoders are alternative specifications, see (Goodfellow et al., 
2016).  

2.4   Model complexity versus interpretability 

One common objection against the use of ML tools is that they are “black-boxes” where the 
relationships learned by the model are not easily interpretable. Even though many ML methods 
are more complex than their linear regression counterparts, this is not an inherent problem of ML 
tools but it rather reflects an unavoidable tradeoff between flexibility and interpretability faced by 
any method. As soon as we aim to reflect nonlinearities, interactions or heterogeneity, model 
interpretation becomes more difficult. Consider tobit models that add flexibility to a linear 
regression to model censored observations at the cost that coefficients cannot be interpreted 
directly, and marginal effects depend on all explanatory variables. Quantile regression or locally 
weighted regression allow for more flexibility at the cost of complicating interpretability in the 
sense that the models generate a large number of marginal effects. This trade-off between 
flexibility versus interpretability also holds for simulation methods. For example simple analytical 
economic models might be superior in terms of interpretability compared to, say, a complex 
computable general equilibrium model. The relevant question regarding interpretability is, 
therefore, not concerning ML tools versus “traditional” methods but whether answering a certain 
research question requires a highly flexible complex model, able to reflect nonlinearities, 
interactions, heterogeneity or dynamics. 
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While interpretability is fundamental for causal analysis, it can also be helpful for pure prediction 
tasks. Interpretability is helpful for debugging models or assessing whether the estimated 
relationships are plausible. Interpretability is also crucial to assess whether ML algorithms are 
discriminatory, for example when used by banks to determine lending or to give guidance for 
sentencing to courts (Molnar, 2018). 
 
Numerous methods exist for interpretation, both in ML and econometrics. A good overview is 
presented by Molnar (2018), from which much of the following discussion is drawn. A more 
detailed discussion is provided in appendix A1. One of the primary approaches for interpretation 
is to plot the implicit marginal effects of one or more specific characteristics such as often used 
for interpreting output from tobit or logit models. Both partial dependence plots (Hastie et al., 2009, 
p. 369) and accumulated local effets plots (Apley, 2016) compare outcomes of one or two 
variables against their predicted outcomes, whereas individual conditional expectation plots 
(Goldstein et al., 2015; Molnar, 2018) generate them for an individual observation. Other methods 
use the model results to simulate marginal effects, as is frequently done with large simulation 
models for policy analysis. Shapley Value Explanations, does this systematically, estimating 
marginal effects by computing predictions drawing from the distributions of the other 
characteristics with and without the characteristic of interest.  
 
If instead of generating marginal effects, one aims to understand how the model’s predictions are 
correlated with specific inputs, one can use an interpretable model to estimate the relationship 
between inputs and the predicted outputs from the more complex model. When used for the whole 
distribution of the data, this is referred to as a global surrogate model. Local interpretable model-
agnostic explanations (LIME) focus on understanding the predictions for a single data point 
(Ribeiro et al., 2016).  
 
Another general approach is to determine how much influence each explanatory variable has on 
the resulting prediction. For tree based models the relative importance of predictor variables can 
be assessed by ranking the importance of different predictors (Hastie et al., 2009, p. 367). Fisher 
et al. (2018) extended this approach to any other model. Flipping the idea of sensitivity tests on 
its head, a common approach in ML is to determine the smallest change of an explanatory variable 
that causes a change to a certain model prediction (Molnar, 2018). Other approaches develop 
so-called ‘Adversarial examples’ identifying what characteristics of an observation need to change 
to generate a false prediction. Finally, there are approaches to explore the heterogeneous effects 
captured by a model by identifying a few representative data points, called ‘Prototypes’ versus 
rare occurrences, called ‘Criticisms’ using clustering algorithms (see Kim et al., 2016). Then the 
model’s predictions at these prototypes and criticisms are compared to their actual outcomes.  

3. What ML can add to the agricultural economics toolbox  
We explore the potential of ML by first highlighting specific limitations of current econometric and 
simulation methods, and identify areas where ML approaches may help fill those gaps. While 
some ML methods can be used to address multiple limitations, the limitations or challenges 
themselves differ. We hope that by highlighting multiple situations where ML methods may be 
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useful will facilitate their broader use.  As noted above, much of ML is focused on prediction and 
predictive tasks are highlighted in section 3.1-3.3. However, in section 3.4 we lay out how the 
prediction capabilities of ML can be useful for causal analysis. Throughout the entire section we 
highlight current and potential applications of these methods in agricultural and applied 
economics.  

3.1. Restrictive functional forms with little theoretical ground  

The choice of model complexity should depend on the phenomenon under study and the specific 
research question. As noted above, many phenomena in agricultural and environmental 
economics are inherently nonlinear, resulting from underlying biophysical, social or economic 
processes. For example, the effect of weather variables on yield (Schlenker and Roberts, 2009), 
groundwater extraction on pumping costs (Burness and Brill, 2001) or health effects of pollution 
(Graff Zivin and Neidell, 2013) are all likely to contain nonlinearities. Other times we are interested 
in estimating relationships between observations, over time, space or social networks, and our 
current approaches usually impose some restrictive structure, such as pre-determined 
neighbours and structure of interaction in spatial econometrics, without strong grounds to justify 
these assumptions. Often we are interested in estimating specific aspects of heterogeneity. For 
example we may be specifically interested in the distributional effects of an intervention, such as 
the case of who reduces consumption in response to food warnings (Shimshack et al., 2007), or 
which children benefit from maternal health interventions (Kandpal, 2011). In most current 
approaches, applied economists estimate average effects or allow the effect to differ across 
dimensions or between a pre-defined, limited number of groups, or select groups ex-post, with 
the temptation to cherry pick those groups that conform to the researcher’s priors or those that 
generate significant results. Pre-determining flexible ML processes to identify key dimensions or 
groups avoids this potential bias, and instead allows the data to determine heterogeneous 
responses across the population. 
 
Economic theory rarely gives clear guidance about the specific functional form of the object one 
is trying to estimate. In many settings, it only provides information about shape restrictions such 
as curvature or monotonicity. Choosing a model that cannot capture nonlinearities, interactions 
or heterogeneity and distributional effects might result in misspecification bias. This 
misspecification bias increases with the degree of nonlinearity of the underlying process 
(Signorino and Yilmaz, 2003). While we worry a lot about potential endogeneity and think 
intensively about finding appropriate instruments or natural experiments to minimize potential bias 
in our estimates of treatment, we are often readily willing to make strong assumptions on 
functional form that themselves can introduce bias into our estimates.  

Current econometric approaches 
The current econometric toolbox already provides flexible models but in many cases 
computational demands limit their applicability for large datasets (large ‘N’) or high dimensional 
data (large ‘K’). Recent examples of such approaches in our field are random coefficient models 
(Michler et al., forthcoming), quantile regression models (D’souza and Jolliffe, 2013; Lehn and 
Bahrs, 2018) or mixture models (Saint-Cyr et al., forthcoming). These approaches allow for more 
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flexibility but still impose restrictive linear assumptions on the estimated relationships. Further, the 
‘flexible functional forms’ advocated and used in demand or supply system estimation are only 
locally flexible but not across the domain of explanatory variables (Wales, 1977). This limitation 
considerably restricts their ability to represent heterogeneous responses to changes in the 
economic environment. Spline models, kernel and locally weighted regression models and GAMs 
add even more flexibility but their application is usually restricted to a limited number of 
explanatory variables (see Hastie et al. (2009) for a detailed treatment of these methods and 
Cooper et al. (2017), Lence (2009), Chang and Lin (2016) for applications from our field, and 
Halleck Vega and Elhorst (2015) for flexible parametric specification and McMillen (2012) for semi 
parametric approaches in spatial econometrics). 
 
A similar constraint exists concerning numerical Bayesian inference approaches. Specifically, 
MCMC sampling methods such as Gibbs or Metropolis Hasting are limited in terms of their ability 
to deal with large datasets and large numbers of variables (Blei et al., 2017).  

What ML can add 
ML models are highly flexible and may be helpful in settings where other flexible models have 
computational problems due to the size of the dataset or the number of variables we want to 
consider. We identify three different approaches that are of particular relevance to applied 
economists: (1) ensembles of trees, particularly gradient boosting approaches, (2) NNs, and (3) 
variational inference methods. While the first two approaches are ML methods that are both very 
flexible and efficient and can be generally applied to a large variety of tasks, variational inference 
is specifically relevant in the Bayesian context.  
 
Gradient boosted trees (see section 2.2.2) are emerging as some of the most effective prediction 
tools in many settings, for example credit scoring (Lessmann et al., 2015; Xia et al., 2017), and 
corporate bankruptcy prediction (Jones et al., 2017). While boosting is primarily used for tree 
based approaches, it is not restricted to them. Fenske et al. (2011), for example, develop a 
Bayesian geoadditive quantile regression approach that is estimated with gradient boosting. In 
agricultural economics, März et al. (2016) apply this approach to farmland rental rates. Apart from 
being very flexible, the approach uses automatic data-driven parameter selection, allowing for 
different parameters across different quantiles. Their results reveal the existence of important 
nonlinear, heterogeneous relationships between covariates and rental rates. Similarly, Ifft et al. 
(2018), find that these approaches outperform other ML and traditional econometric methods in 
predicting farmer credit demand. 
 
NNs are also capable of capturing highly nonlinear relationships. One important difference 
between NNs and tree-based methods is that using a NN is complex and usually requires the 
user to specify more attributes, such as the number of layers and neurons, and more tuning during 
training. With cross-sectional data, tree-based methods outperform NNs in several benchmark 
studies (Jones et al., 2017; Lessmann et al., 2015). However, compared to tree-based methods, 
NNs offer more natural ways to deal with nonlinear relationships beyond cross sectional data such 
as time series, panels or spatial data. Through their encoding of the sequential data in the hidden 
state vector in the case of RNN, or hidden layer in the case of CNN, NNs can uncover more 
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complex nonlinear dynamic relationships than the usual AR models. Cao et al. (2012) find the 
univariate RNN outperforms the univariate Autoregressive Integrated Moving Average (ARIMA) 
model in the context of wind speed predictions. Recent studies apply a more complex LSTM RNN 
(Liu et al., 2018b) or a RNN using convolution (Liu et al., 2018a) for the same task using more 
complex data. Karlaftis and Vlahogianni (2011) review studies comparing the performance of NN 
and ARIMA models in the context of transportation research, and report mixed evidence in terms 
of the superior performance of NN. However, most of the NN studies in their comparison were 
written before the recent innovations in DL methods. In our view, ML also holds potential for spatial 
econometric models. CNNs with their capability of handling 2D grid data seem particularly 
relevant. The CNN could be trained to detect the extent of the neighbourhood as well as the most 
relevant features in neighbouring characteristics without the need to pre-define the 
neighbourhood or the neighbourhood effects. 
 
Other disciplines have actively debated the advantages and disadvantages of more flexible 
models such as neural networks. In political science, a controversy emerged in early 2000s that 
compared neural networks to logistic regressions (Beck et al., 2004, 2000; de Marchi et al., 2004). 
On one hand, de Marchi (2004) questions the superiority of NNs compared to logistic regression 
models, arguing that models should be as parsimonious as possible and worries about overfitting 
and the interpretability of NNs. Beck et al. (2004), on the other hand, note that NNs encompass 
logit models as a special case and argue that controlling for overfitting using a test set is superior 
to simply assuming that the logit model does not overfit. Most importantly, a logit model might 
require making unrealistic assumptions. In their context, for example, their restrictive model forces 
the probability of a conflict to be the same for all countries even though we would expect that 
effects are heterogeneous, depending non-linearly on variable interactions.  
 
Variational inference (Blei et al., 2017) is another ML approach that can increase model flexibility 
by allowing for a larger number of parameters. It can also efficiently deal with larger datasets. The 
basic idea of variational inference is to approximate complex distributions using more easy-to-
compute distributions. It provides an alternative to MCMC sampling approaches, trading accuracy 
for computational efficiency (Blei et al., 2017). Athey et al. (2018) use variational inference to 
estimate restaurant demand with a large number of latent variables that reflect unobserved 
characteristics, which would have challenged traditional methods. Using a similar approach, Ruiz 
et al. (2017) estimate a sequential consumer choice model with latent attribute interaction using 
highly disaggregated shopping cart data that takes into account interactions between individual 
grocery items.  

3.2. Limited ability to extract information from unstructured data  

Traditionally, economists work with data that are highly structured (e.g. cross sectional, time-
series or panel). Increasingly, unstructured data such as images, text or speech have become 
available. We loosely define unstructured vs. structured data by distinguishing between data that 
can be processed in a spreadsheet (structured data) and those that cannot (unstructured data). 
Our econometric tool kit is only of limited use for the latter. Many ML advances have been made 
specifically to derive information or variables (features) from unstructured data (LeCun et al., 
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2015). As such, ML can play an additional role in our discipline as a preprocessing step to derive 
variables for subsequent analysis using either ML or traditional tools. Most of the ML methods 
useful for processing unstructured data are also relevant in situations with (too) many explanatory 
variables or data at a very high temporal or geographical resolution. These cases are considered 
section 3.3.  

Current approaches 
Many unstructured data sources, such as images from remote sensing (Donaldson and 
Storeygard, 2016), sensor data (Larkin and Hystad, 2017), text data from news (Baker et al., 
2015), or cell phone data (Dong et al., 2017) are already intensively used without the use of ML 
tools. Approaches rely on aggregating the data along hand-crafted features based on domain 
knowledge. For example, remote sensing data are used to derive a vegetation index (NDVI) 
(Bradley et al., 2007), or single measures such as night light intensity (Blumenstock, 2016; 
Bruederle and Hodler, 2018). Cell phone records are converted into specific indices (Dong et al., 
2017; Steele et al., 2017). Equally, when working with text data, indices are typically derived 
based on the number of occurrences of certain terms or phrases (Antweiler and Frank, 2004; 
Baker et al., 2015; Baylis, 2015; Gentzkow and Shapiro, 2010; Heinz and Swinnen, 2015; Saiz 
and Simonsohn, 2013; S. L. Scott and Varian, 2013; Steven L. Scott and Varian, 2013). 

What ML can add 
ML approaches can play an important role in making information from unstructured data sources 
available for economic analysis with an algorithmic approach. They can automatically extract the 
most relevant features for a task, and are potentially capable of deriving more complex features 
from the raw data missed by hand-crafting. This capability also opens up the opportunity to use 
novel data sources for economic analysis. For example, recent work uses google street view 
images to predict local demographics (Gebru et al., 2017).  
 
We distinguish five different ML approaches to extract features from unstructured data. 1) If most 
data are labeled, i.e. observations include a dependent variable (outcome or label), end-to-end 
learning can be applied. If labeled data are scarce, i.e. for most observations we only observe the 
explanatory variables, 2) unsupervised pre-training or 3) transfer learning can be used. 4) When 
dealing with more complex data such as networks or trajectories, approaches that automatically 
create a large number of features based on “hand-crafted” rules can be applied. 5) We briefly 
describe uses of ML in text analysis.  

End-to-end learning 
If we have lots of labeled data we can use ‘end-to-end learning,’ i.e. we can train a model using 
the raw data directly as an input to predict the final variable of interest. The crucial point here is 
that we do not rely on hand-crafted features or variables, but let the ML algorithm, usually a DNN, 
learn to extract useful features from the raw data directly. This approach avoids the loss of 
information often implied by selection or aggregation in traditional approaches. For example, if we 
extract lumens per pixel in nightlights data in a hand-crafted approach, we a-priori exclude the 
colour of the pixel or the pattern of lights, both of which might be informative for predicting 
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economic activity. However, for end-to-end learning to work, the algorithm requires vast amounts 
of labeled data for training.  
 
Authors have used CNN and RNN to derive crop-cover classifications from remotely sensed data 
(Ienco et al., 2017; Kussul et al., 2017; Minh et al., 2017; Rußwurm and Körner, 2017). The NNs 
were able to take into account the temporal dimension of the remote sensing data observed over 
time to allow them to discern between crop types. Rußwurm and Körner (2017) use remote 
sensing data (Sentinel 2A images) as an input and a dataset of over 137 000 labeled fields in 
Bavaria, Germany to identify 19 field classes. But even in settings with less abundant labeled 
data, approaches close to end-to-end learning approaches might be feasible. You et al. (2017) 
for example, use multispectral remote sensing data to predict US county-level soybean yields. By 
making weak assumptions on the data generating process, they are able to reduce the 
dimensions of the input data. Specifically, they assume that the location of pixels in the input 
images does not matter when predicting average yield in a region. Hence they convert the images 
to a histogram, counting the number of pixels with different intensities in the three RGB channels. 
After this preprocessing, they predict yields without deriving further handcrafted features (as in 
Bolton and Friedl, 2013; Johnson, 2014) and thereby preserve the spatio-temporal structure of 
the data when applying their CNN and RNN models.  

Unsupervised pre-training 
One approach to make use of abundant unlabeled data and limited labeled data, is unsupervised 
pre-training of DNNs. Hinton et al. (2006) use unsupervised pre-training (or greedy layer wise 
training) to successfully train the first DNN. The idea is to train each layer of an NN in sequence 
in an unsupervised fashion. Each layer acts like an autoencoder that aims to map its input to itself 
while employing some form of regularization. The model is therefore also called a stacked 
autoencoder. Once the first layer is trained (i.e. the first autoencoder), the learned encoding is 
given to the second layer (the second autoencoder), which is then trained and its encoding is 
given to the next layer. This process continues up to the second last layer whose output can be 
thought of as a representation of the input data. The last layer is then trained using the labeled 
data to match this learned representation to the target variable, usually involving only a small 
number of parameters. Training can stop here or it is possible to refine model parameters of all 
layers in a final supervised training step using the labeled data. With this approach it is possible 
to train most of the parameters of the NN using only unlabeled data.  
 
To help build intuition, compare unsupervised pre-training to using PCA in a binary classification. 
PCA performs unsupervised dimensionality reduction by mapping a high dimensional input vector 
into a lower dimensional representation (or encoding). This encoding might then be used as 
explanatory variables in a simple (supervised) binary regression. Similarly, with an unsupervised 
pre-training approach, we train all layers up to the second last layer in an unsupervised way (the 
stacked autoencoder). The outcome of the second last layer is an encoding of the input variables, 
like the output of the PCA. The last layer takes this encoding as explanatory variables to be 
mapped to the dependent variables (i.e the binary target) just as in a simple binary regression. 
What is different between the two approaches is that PCA is less flexible compared to the stacked 
autoencoder as a feature extractor (see section 2.3). Additionally, in an unsupervised pre-training 
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approach we usually do not stop with the autoencoder trained in unsupervised way but rather use 
the trained weights as starting values for a supervised training in which all weights, including 
weights from the earlier layers, can be adjusted in a next step, hence the name “pretraining”. 
Stacked autoencoder approaches are used in remote sensing (Liang et al., 2017; Othman et al., 
2016; Zhang et al., 2015; Zhou et al., 2015); Cheng et al. (2017) and Petersson et al. (2016) 
provide an overview.  

Transfer learning 
An alternative approach to deal with limited labeled data is transfer learning. The general idea is 
that models and parameters trained in one context can be used in another. Typical applications 
are image classification or object recognition. Large models like VGG (Simonyan and Zisserman, 
2014) or ResNet (He et al., 2015) are trained on vast datasets of labeled images (such as 
ImageNet). These models, along with their trained parameters, can be transferred to other image 
recognition tasks where only the last layer(s) are trained, or the pretrained parameters are used 
as starting values. At an intuitive level, even though a model is ultimately trained to distinguish 
between dogs and cats, the early layers of that network learn how to identify general structures 
in images such as edges, lines, or circles, that are also useful for other applications. 
  
The idea of transfer learning is leveraged in several ways by Jean et al. (2016) to improve poverty 
predictions from remote sensing data. Prior work uses nightlight intensity (lumens per pixel) 
directly to predict poverty and economic activity (Blumenstock, 2016; Bruederle and Hodler, 
2018). Jean et al. (2016) demonstrate that this does not capture variation in the low end of the 
poverty scale. They argue that daylight images may provide more information and propose to use 
transfer learning to combine it with the night light images. They start from a pretrained VGG16 
model, using it to predict night time light intensity classes from daytime satellite images. This 
model is then used as a feature extractor, by removing the last layer of the CNN (the layer that 
classified the light intensity). The extracted features (i.e. the outcome of the second last layer) are 
then used in a ridge regression to predict cluster level expenditures or assets using cluster-level 
wealth. Like stacked autoencoders (or greedy layer wise pretraining) this approach treats the 
layers of a NN as higher order representations of underlying raw data. In contrast to the stacked 
autoencoder approach, however, the model is not trained in an unsupervised fashion but trained 
to perform a different but related prediction task where labeled data (here night light images) are 
abundant. The assumption behind the approach is that characteristics in daytime images can be 
inferred from higher income regions (e.g. roofing material) that have a certain relationship to 
income or expenditure and that these relationships also extent to poorer regions. This approach 
can be more efficient than a stacked autoencoder. The latter aims to find representations of the 
input data that can recover the information in the input data as accurately as possible (i.e. to 
maintain as much information as possible) while the transfer learning approach aims to extract 
features that are most suitable to perform a related task, i.e. to maintain only the information 
relevant for that specific task - in this case, predicting night lights. Head et al. (2017) explores to 
what extent the approach can be applied to other countries and measures of economic 
development.  
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“Brute force” feature engineering  
Blumenstock et al. (2015) propose a fourth approach to using complex raw data without the need 
for hand crafted features. Their “brute force” approach to feature engineering uses a deterministic 
finite automaton that automatically creates a large number of features, with the aim to capture as 
much variation in the raw data as possible. The created features are then used in a shrinkage 
regression to select the most promising features. They apply this approach to predict individual 
level poverty measures using phone record data and show that it outperforms an approach using 
hand crafted features.  
 
The basic idea of a deterministic finite automaton is that relatively simple rules (or “grammar”) are 
defined that specify how individual phone records can be summarized. The algorithm then 
extracts all features allowed by the grammar. While defining the rules requires more “hand 
crafting” in comparison to end-to-end learning, transfer learning or unsupervised pre-training, it 
seems to hold potential in situations with particularly complex input data such as network data, 
trajectories, phone records or household level transactional scanner data.  

ML for text analysis 
ML can also improve the analysis of text data. Until recently, text analysis largely used hand-
crafted features, but the unstructured nature of the data and the predictive nature of many of the 
research questions lend themselves to ML. For a recent review of text analysis in economics, see 
Gentzkow et al. (forthcoming) from which we draw much of the following discussion. Other recent 
reviews of uses of text analytics exist: Evans and Aceves (2016) in sociology, and Grimmer and 
Stewart (2013) in political science.  
 
Much text analysis can be grouped into three principal approaches. The first counts words or 
phrases and then predicts an outcome variable based on the those counts. One fundamental 
challenge of this approach is that due to the large number existing words/phrases we typically 
obtain a high dimensional input vector and ML approach, particularly shrinkage methods, are 
applied to deal with this problem. For example, Gentzkow et al. (2016) measure partisanship in 
congress by analyzing how easy it is to identify the party of a congressman from speech. Second, 
topic models are an unsupervised learning approach, where topics are unobserved and modeled 
as a weighted cluster of words or phrases that commonly appear together (see Blei, 2012 for an 
overview).  A given text is characterised in terms of a compositions of such topics. These models 
are Bayesian models estimated using variational inference to deal with high dimensionality (see 
section 3.1). They have been used to classify industries capturing changes over time, based on 
companies’ product descriptions (Hoberg and Phillips, 2016) or to classify patents (Kelly et al., 
2018). Finally, text analysis can also gain from approaches central to ML natural language models 
used for machine translation speech recognition. One central feature of these approaches is word 
embeddings that map words and the relationships between them in a high dimensional vector 
space. While currently there are only few examples (Iyyer et al., 2014) that use these approaches 
in a social science context, Gentzkow, Kelly, and Taddy  (forthcoming) concluded that they “can 
play a role in the next generation of text-as-data applications”.  
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3.3. Limited ability to deal with large number of explanatory variables  

In many areas, economists have access to large datasets both in terms of the number of 
observations, N, and frequently with respect to the number of explanatory variables, K. In demand 
estimation for example, one may observe a very large number of alternative products, sold at a 
number of stores, their prices and characteristics, that may affect demand for any one good (Bajari 
et al., 2015). Similarly, geophysical data such as soil or weather data can include many observed 
characteristics (wind, temperature, precipitation, evaporation etc.) at highly granular spatial and 
temporal resolution often with variables misaligned over time and/or space in the sense that they 
are observed at different spatial or temporal resolution. Typically economic theory and domain 
knowledge provide only weak guidance to selecting the specific variables that should be included 
in the model.  

Current econometric approaches 
The frequentist econometrics approach to dealing with issues of variable selection is to impose 
structure to select K, apply a general-to-specific testing approach which is only feasible with K<N, 
or use model selection criteria such as AIC comparing all possible model combinations which is 
only possible for small K. When K is large, and particularly when working with high resolution data 
misaligned in space or time, data are typically aggregated by extracting handcrafted features that 
are considered relevant, similar to the approach applied to unstructured data (see section 3.2). 
The design of such aggregation measures requires specific domain knowledge, and a loss of 
information is inevitable. Often a mix of handcrafted collapsing and test driven variable selection 
is employed. Alternatively, data driven dimensionality reduction techniques such as principal 
component analysis (PCA) are used. Bayesian variable selection or model averaging approaches 
are more flexible and theoretically consistent but are not routinely used in the profession. Many 
ML approaches, such as Lasso, can be interpreted as a Bayesian variable selection approach. 

What ML can add 
ML can be useful in addressing large K problems. These methods are crucial when K exceeds N, 
but are frequently useful even when N>K. Several ML approaches that penalize model complexity 
such as Lasso can be viewed as variable selection techniques (see 2.2.1). Other approaches 
such as trees perform internal variable selection and are well placed to deal with irrelevant 
explanatory variables. Further, the same approaches described in the previous section to deal 
with unstructured data can be applied in situations with large K. First, one can apply an 
unsupervised dimensionality reduction approach such as (stacked) autoencoders for greedy 
layerwise pretraining or as a feature extractor. For example, Li et al. (2016) use autoencoders to 
provide better air pollution predictions based on sensor data taking into account spatial and 
temporal dependencies, and avoiding the use of handcrafted features. Zapana et al. (2017) use 
autoencoders for extracting features to characterize large climatological time series data. Liu et 
al. (2015), Saha et al. (2016) and Li et al. (2018) use autoencoders to derive forecasts of weather, 
monsoon and water quality, respectively. Autoencoders are also combined with RNNs to capture 
temporal dynamics and deal with missing observations (Bianchi et al., 2018; Li et al., 2018). Note 
that the extracted features do not have a direct interpretation (as with the components of a PCA), 
but can be used to trace back estimated marginal effects in terms of the original input variables. 
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Unsupervised feature extraction (i.e. dimensionality reduction) has the advantage that it can make 
use of unlabeled data. The disadvantage of these approaches is that they aim to preserve as 
much variation of the underlying data but do not take into account that some variation is more 
relevant than others for a given task. For example, for yield prediction, certain variation in weather 
might be irrelevant (e.g. temperature outside of the growing season). End-to-end learning 
approaches can take into account which variation is most relevant but require that “sufficient” 
labeled data are available, where “sufficient” depends on the dimensions of the input data and 
the complexity of the problem. RNNs and CNNs are well-placed to handle large K, and are 
particularly applicable in cases where observations are misaligned in space or time. Intuitively 
they also perform a form of dimensionality reduction: in RNNs, by encoding information in the cell 
state vector and in CNN by encoding information in the hidden layer of the network. In contrast to 
the unsupervised approach, the NNs do not aim to preserve as much variation as possible but to 
extract features that are relevant for the supervised prediction task. In our example it might be 
sufficient to store the information that temperature is in the suitable range for crop growth but not 
the exact variation of temperature within that range. One disadvantage of RNNs in this situation 
is that while their architecture is good at memorizing the temporal order of events, they are not 
well placed to detect at which place a certain event happens (which can be an advantage in other 
settings such as language modeling). Additionally, even though an RNN can theoretically 
memorize sequences of arbitrary length, in practice their performance deteriorates quickly once 
the input sequence becomes too long. Recently, novel CNN structures have been developed that 
have a much longer effective memory and can handle larger sequence lengths (Bai et al., 2018; 
Gehring et al., 2017; Kalchbrenner et al., 2016). An additional advantage of a CNN structure is 
that the timing of an event can be more naturally preserved. The model could thus learn that a 
weather event in the winter has a different effect than one in the spring. 

3.4. Causal inference and identification: linearity, lack of appropriate instruments and 
counterfactuals 

The fundamental problem of causal inference is that we do not observe what would have 
happened to the treated observations without treatment (or the control observations with 
treatment). In some sense, this can essentially be thought of as a prediction problem, where we 
need to predict the counterfactual.  
 
Most econometric approaches to causal inference presume some structure. For example, 
differences in differences assumes parallel trends and that common shocks have the same effect 
for treatment and control units. When evaluating a policy change in one region, assuming that 
economic shocks have the same effect across it and other ‘control’ regions might be unrealistic, 
potentially biasing the estimate on treatment (Gobillon and Magnac, 2016 for a discussion; see 
Heckman et al., 1997). Current approaches have difficulty dealing with high dimensionality or 
flexibility, either in instruments or in the counterfactual. For example, difference in differences can 
fail when existent heterogeneity in treatment effect is not modelled since the inclusion of location 
fixed effects will not remove the bias from the average treatment estimate (Gobillon and Magnac 
2016). While machine learning does not relieve the analyst from needing a good identification 
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strategy, it can, for some approaches, add flexibility to modeling selection or the effect of treatment 
and better model treatment heterogeneity. But the need for unbiased coefficients on treatment 
complicates the direct application of ML approaches as they can generate regularization bias. 

Current econometric approaches 
There are many approaches for causal inference, and many excellent discussions of them exist 
(Angrist and Pischke, 2008). Here we focus on a few approaches where ML has added flexibility. 
Estimating causal effects is easiest when treatment is exogenous. When treatment is randomized, 
and covariates are balanced across treatment and control groups, one can use a simple average 
to get an estimate of the average treatment effect. More common is to control for baseline 
outcomes and use a difference in differences strategy to tighten up the standard errors around 
the treatment estimate. 
 
When treatment is determined by observables, one can either explicitly model the selection 
process or match treatment and control on observables that determine treatment. Different 
versions of matching (nearest neighbour versus propensity score for example) are simply different 
ways of collapsing a multi-dimensional object, made up of several matching variables, into a 
single dimensional measure of proximity. A variant on the matching approach is the doubly robust 
regression, where treatment and control observations are first matched, and then the outcome is 
regressed against the controls and the treatment, using the observations weighted by their 
propensity score from the matching. This approach is robust against misspecification in either the 
matching or the regression stage. Another variant of the matching approach is synthetic controls 
(Abadie et al., 2010), which match over pre-treatment outcomes, and is useful when one has few 
treatment units, but longer time series. Thus, the resulting counterfactual a weighted combination 
of multiple control observations. One constraint is that with many possible control observations, 
estimating a weight for each control may be problematic.  
 
If treatment selection is based on time-invariant unobservables and one observes the treated 
observations’ pre-treatment, one can simply apply a difference-in-differences approach, with unit 
fixed effects. One of the tricks with using ML methods in the context of fixed effects is that ‘within’-
transformations are not consistent in a non-linear setting, and errors are likely to be correlated 
within observations over time, which can require some modifications to standard ML methods, 
discussed below.  
 
Last, in the case of endogenous regressors, one frequently uses instruments in two-stage least 
squares (2SLS). One constraint associated with 2SLS is that it assumes a linear relationship in 
both the first and second stage, as well as homogeneity of treatment (Hartford et al., 2017). Non-
parametric models relax these assumptions (Blundell et al., 2007; Chen and Pouzo, 2012; Hall 
and Horowitz, 2005; Newey and Powell, 2003), however, these approaches are computationally 
limited in terms of the size of the dataset or the number of instruments or controls they can 
consider.  

https://paperpile.com/c/pOrzXn/HO50H
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What ML can add 
The predictive ability of machine learning in complex and high-dimensional settings can also be 
used to improve causal estimates. Along with several authors developing the potential of ML for 
causal inference in economics, discussion of causal analysis is currently emerging from the ML 
literature itself. Readers interested in a rigorous discussion of structural causal models from an 
ML community perspective are encouraged to consult Peters et al. (2017). We briefly discuss five 
general types of ML approaches for causal inference introduced in recent years, applicable to 
different settings defined by the assignment of treatment and the nature of treatment effect, as 
indicated in brackets: 

(i) Counterfactual simulation [exogenous treatment] 
(ii) Double Machine Learning [selection on observables, average effects]  
(iii) ML for Matching and Panel Methods [selection on observables, unobserved time-

invariant characteristics] 
(iv) Causal forests [selection on observables, heterogeneous effects] 
(v) ML for IV and Deep IV [endogenous treatment] 

Counterfactual simulation 
Counterfactual simulation basically uses data on pre-treated and control observations to predict 
what would have happened to exogenously treated observations without treatment. Comparing 
this prediction to the actual outcome for the treated observations identifies the treatment effect. 
This general approach is certainly not new in itself but the excellent predictive capabilities of ML 
offer considerable advantages with respect to the empirical specification in settings with big data 
and complex, high-dimensional control-outcome relationships (Varian, 2014, p. 21). These 
approaches can be used with randomized treatment or in quasi-experimental settings where 
treatment assignment is controlled for. For example, Burlig et al. (2017) combine panel data 
methods with Lasso to predict a flexible counterfactual of high-frequency school energy 
consumption from pre-treatment data to estimate the effect of a program to reduce school energy 
use. 
 
No new methodology and no volume of data will change the fact that this approach only 
consistently identifies the treatment effect if treatment has been exogenously assigned to the units 
of observation. If this is not the case, confounding variables likely affect both the selection into 
treatment and the outcome variable causing a bias of the estimated treatment effect (see Double 
ML). Endogenous treatment requires special attention (see IV and Deep IV).  

Double ML (DML) 
For the case where treatment is assigned based on a complex or nonlinear combination of 
observables, ML may help flexibly model selection. DML combines the predictive power of ML 
with an approach to address regularization bias (Belloni et al., 2016; Chernozhukov et al., 2018a, 
2017). Consider the following model, where the outcome of interest is the additive effect of 
treatment plus some non-linear function of covariates (1), and those same covariates non-linearly 
determine treatment (2): 
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(1) 𝑌𝑌 = 𝐷𝐷𝜃𝜃0 + 𝑔𝑔0(𝑋𝑋) + 𝑈𝑈;  𝐸𝐸[𝑈𝑈|𝐷𝐷,𝑋𝑋] = 0 
 

(2) 𝐷𝐷 = 𝑚𝑚0(𝑋𝑋) + 𝑉𝑉;  𝐸𝐸[𝑉𝑉|𝑋𝑋] = 0 
 

where Y is the outcome variable, D the treatment, 𝜃𝜃0the marginal treatment effect, and 𝑔𝑔0and 
𝑚𝑚0are functions depending on controls, X. The error terms U and V are mean zero conditional on 
the respective right hand side variables. A large dimension of X combined with a complex 𝑔𝑔0(𝑋𝑋) 
complicates the estimation of 𝑔𝑔0(𝑋𝑋) with standard econometric estimators, suggesting the 
employment of flexible ML tools like Lasso, random forests or NN. However, the regularization 
bias inherent in such tools would render a naive application and subsequent estimation of 
𝜃𝜃0 biased. The idea behind DML is to offset the regularisation bias by stripping out the effect of X 
from D. In a first step, split the sample, train 𝑔𝑔�0(𝑋𝑋) based on (1) and 𝑚𝑚�0(𝑋𝑋) based on (2) using 
one part of the sample. This step is responsible for the name of the approach. In the second step, 
regress 𝑌𝑌 − 𝑔𝑔�0(𝑋𝑋) on the orthogonalized D: 𝑉𝑉�𝐷𝐷 = (𝐷𝐷 −𝑚𝑚0� (𝑋𝑋))𝐷𝐷 to obtain 𝜃𝜃�0from (1) using the 
main sample. Note that by removing the influence of X on D and subtracting 𝑔𝑔�0(𝑋𝑋)from the 
outcome in the second step removes the regularisation bias. Further, splitting the sample avoids 
the bias otherwise caused by overfitting (Chernozhukov et al., 2018a, pp. C4–C7). This approach 
is analogous to a linear instrumental variable (IV) estimator in classical econometrics, where one 
strips out the non-linear part of 𝑌𝑌 and includes the estimated residuals from a reduced form 
regression in the structural equation, and follows the spirit of ‘debiased Lasso’ (Belloni et al., 2014; 
Belloni and Chernozhukov, 2013). The DML approach is very flexible with respect to the ML 
technique applied in the first step. Chernozhukov et al. (2017) use k-fold cross fitting in their 
illustrative note but any supervised learning approach like boosted trees, random forests, or NNs 
could be used. DML can also be used to estimate the coefficient on an endogenous variable in a 
partially linear instrumental variables model, or the local average treatment effect (Chernozhukov 
et al., 2017). While it holds much potential for settings with non-linear treatment assignment or 
outcomes that are nonlinear functions of observables, note that this method assumes that the 
treatment effect itself is additive.  

ML methods for matching and panel methods 
When treatment is determined on observables, several authors also use ML approaches for 
matching to non-linearly control for selection into treatment. Gradient boosted trees have been 
used for propensity score matching in medical research (Lee et al., 2010; McCaffrey et al., 2004). 
Simulated data demonstrate that boosted trees perform particularly well under nonlinear and non-
additive associations between covariates (Lee et al., 2010). Another approach to matching is an 
ML version of synthetic controls, which can face challenges with a large number of potential 
control observations, which requires the estimation of many weights. Earlier approaches solved 
this problem by imposing restrictions on the weights, whereas Doudchenko and Imbens (2016) 
use an elastic net to estimate these weights, since fundamentally this is a prediction problem 
where control observations are being used to predict pre-trend treatment observations. 
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Dimension-reduction ML techniques for selection are frequently combined with doubly-robust 
regressions to control for potential error in model specification (Belloni et al., 2014; Farrell, 2015). 
Mullally and Chakravarty (2018) apply this approach to estimate the effect of a groundwater 
irrigation program in Nicaragua.  

As noted above, when treatment is determined by observables, a standard approach is to use 
panel methods for identification, setting up a difference in differences framework. Then one can 
control for time-invariant unobservables that might be correlated with the placement of treatment. 
Several authors have adapted ML methods for panel settings to allow for dimensionality reduction 
and more flexible functional forms. Belloni et al. (2016) suggest that there are two problems in 
naively applying regularization to panel settings. First, they note that the assumption that many 
coefficients are effectively zero may conflict with the idea that individual heterogeneity is non-zero 
for most. We may want to allow for non-zero fixed effects for all units in the panel. Second, we 
generally assume that errors are correlated over time for the same individual, which may affect 
the number of explanatory variables selected using regularization. Belloni et al. allow for the 
presence of unrestricted additive individual specific heterogeneity that is partialed out of the model 
before variable selection occurs using a version of the Lasso estimator that allows for a clustered 
covariance structure. The authors further develop methods for inference that allow for model 
selection mistakes.  

Causal forests 
Double ML, matching and panel methods are capable of estimating average treatment effects, 
but we often care about individual responses to targeted interventions. “Traditional” 
nonparametric approaches such as nearest-neighbour matching and kernel regression are 
quickly at their limit with more than a few covariates, use the same distance metric over all 
covariates, and can be highly sensitive to the addition of covariates, including those that do little 
to predict outcome.  Wager and Athey (2018) introduce causal forests that are able to estimate 
considerably more complex models given sufficient data. Like random forests, causal forests 
choose covariates for the weighting depending on their predictive ability, and thus are robust to 
the addition of uninformative covariates. This approach builds upon Athey and Imbens (2016) 
who propose a data-driven approach to partitioning data into subgroups for treatment estimation, 
but takes it beyond group heterogeneity. Causal forests are able to consistently estimate 
heterogeneous treatment effects under unconfoundedness. Their algorithm grows ‘honest’ trees, 
estimating the splits based on one subsample and the treatment effects based on another. Even 
though Wager and Athey (2018) focus on causal inference, their paper is also the first to provide 
theoretically proven statistical inference procedures for random forests, which are also useful for 
generating confidence intervals in pure prediction tasks. In contrast to DML, causal forests are 
restricted to this specific ML method to control for covariates’ influence on outcomes. In the case 
of randomized treatment, one can use a variety of ML algorithms to identify the most relevant 
groups over which to choose to estimate heterogeneous treatment effects (Chernozhukov et al., 
2018b). Athey et al. (2016) extend their method of generalized random forests to estimate 
heterogeneous treatment effects with instrumental variables.   
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Chernozhukov, Demirer et al. (2018b) apply several ML methods to estimate the heterogeneous 
effects of a randomized treatment on a microcredit intervention on borrowing, self-employment 
and consumption. They identify the most and least affected groups and the characteristics 
associated with them. Carter et al. (in press) use generalized random forests to estimate 
heterogeneous effects of a randomized small business program in Nicaragua on farmer outcomes 
and find the largest effects for disadvantaged households. While they find small results overall, 
those households who were disadvantaged at the baseline benefited much more substantially 
from the program, highlighting potential benefits to targeting. Rana and Miller (2019) use causal 
forests combined with matching to estimate heterogeneous effects of two types of forest 
management programs in India. 
 

ML for IV and Deep IV 
Prediction of counterfactual outcomes only identifies policy or treatment effects if predictors are 
not correlated with the error term, i.e. they are are exogenous. Several papers adapt ML 
techniques for selecting a subset of a large number of instruments to predict the first stage of a 
linear IV regression. Belloni et al. (2012) develop a LASSO-based method for estimating the first 
stage prediction in a linear IV estimation when one has a large number of potential instruments.  
Bevis and Villa (2017) use this approach to estimate long-run effects of maternal health on child 
outcomes, where they have a large number of potential instruments from weather outcomes 
during the mother’s early life. Ordonez et al. (2018) use this approach to predict adoption of 
community forest management in Michoacan, Mexico to evaluate its effects on forest outcomes. 
They have multiple potential instruments from the location and activity or foresters that affect the 
supply of the community forest management plans. 
 
While these methods address potential problem of selecting from a large number of instruments 
they still impose linearity on the first stage.  Deep IV (Hartford et al., 2016) is a 2SLS approach 
that uses ML techniques to relax the restrictive linearity and homogeneity assumption of 2SLS 
and overcomes the computational limitations of non-parametric IV approaches. As with other ML 
approaches, it also offers an algorithmic approach for variable selection, which may be useful 
when facing a host of possible instruments. 
 
To understand the concept of Deep IV, consider the structural equation (following Hartford et al., 
2016): 
(3)  𝑌𝑌 = 𝑔𝑔(𝐷𝐷,𝑋𝑋) + 𝑈𝑈        
where Y is the outcome variable equal to the sum of a potentially nonlinear function g(D,X) and 
an error U with an unconditional mean zero. The vector of covariates X is exogenous whereas 
the policy or treatment variable D is correlated with the error U such that 𝐸𝐸[𝑈𝑈|𝐷𝐷,𝑋𝑋] ≠ 0and is 
therefore endogenous. If g(D,X) was linear and an instrument was available, one could apply the 
typical 2SLS estimation. Here, for counterfactual prediction, we would like to obtain a function 
predicting 𝐸𝐸[𝑌𝑌|𝐷𝐷,𝑋𝑋] such that  
(4)       ℎ(𝐷𝐷,𝑋𝑋) = 𝑔𝑔(𝐷𝐷,𝑋𝑋) + 𝐸𝐸[𝑈𝑈|𝑋𝑋], 
i.e., holding the distribution of U constant as D changes. If we had ℎ(𝐷𝐷,𝑋𝑋), we could identify the 
effect of changing policy from D0 to D1 through the counterfactual simulation: ℎ(𝐷𝐷1,𝑋𝑋) − ℎ(𝐷𝐷0,𝑋𝑋) =
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𝑔𝑔(𝐷𝐷1,𝑋𝑋) − 𝑔𝑔(𝐷𝐷0,𝑋𝑋). Non-structural ML applied to (3), however, would result in a prediction 
function where the expectation of the error is conditional on the policy variable, and obtain instead 
𝐸𝐸[𝑌𝑌|𝐷𝐷,𝑋𝑋]=𝑔𝑔(𝐷𝐷,𝑋𝑋) + 𝐸𝐸[𝑈𝑈|𝐷𝐷,𝑋𝑋] which is not equal to ℎ(𝐷𝐷,𝑋𝑋). Consequently, a counterfactual 
simulation with this conditional expectation leads to a biased estimation of the policy effect. The 
availability of a vector of instruments Z, defined as variables excluded from X, relevant for 
predicting D and uncorrelated with U, allow us to obtain the prediction function in (4). Due to the 
potential (and likely) non-linearity of g(D,X), the approach is somewhat more involved than 2SLS 
but follows the same logic. Taking expectation of (3) conditional on X and Z gives us 
(5)  𝐸𝐸[𝑌𝑌|𝑋𝑋,𝑍𝑍]=𝑔𝑔(𝐷𝐷,𝑋𝑋|𝑋𝑋,𝑍𝑍) + 𝐸𝐸[𝑈𝑈|𝑋𝑋,𝑍𝑍] = ∫ℎ(𝐷𝐷,𝑋𝑋)𝑑𝑑𝑑𝑑(𝐷𝐷|𝑋𝑋,𝑍𝑍) 
where𝑑𝑑(𝐷𝐷|𝑋𝑋,𝑍𝑍)is the conditional distribution of treatment given the covariates and instruments. 
Hartford et al. (2016) suggest obtaining an estimate of ℎ(𝐷𝐷,𝑋𝑋) by first learning the distribution of 
treatment 𝑑𝑑�(𝐷𝐷|𝑋𝑋,𝑍𝑍)(first stage) and then the expectation of outcome given treatment ℎ�(𝐷𝐷,𝑋𝑋) from 
minimizing a quadratic loss function of the difference between Y and the integral, given 𝑑𝑑�(𝐷𝐷|𝑋𝑋,𝑍𝑍). 
Note that if 𝑔𝑔(𝐷𝐷,𝑋𝑋) and 𝑑𝑑(𝐷𝐷|𝑋𝑋,𝑍𝑍)are linear, we return to the traditional 2SLS approach where the 
integral disappears and two sequential OLS estimates do the trick. Hartford et al. (2017) lay out 
an ML approach that uses a supervised ML in both the first and second stage. The first stage 
estimation approach is a straightforward supervised prediction task where flexible ML tools, such 
as NN, can be used to predict complex non-linear effects of the instruments and controls on 
treatment. The second stage is also a supervised ML setting. However, training a NN for this task 
is more complex as it requires evaluating an integral to derive the gradients of the loss function 
during training. Hartford et al.  (2017) propose a stochastic gradient descent approach using MC 
approximation that can efficiently be applied in a large dataset. The authors stress that the Deep 
IV approach can be applied using readily available ML techniques without customization, thereby 
opening opportunities for applied economics research. 

3.5. Limitations of simulation models for policy analysis 

Problem statement / Current approaches 
Apart from econometric applications, our profession also intensively uses computational 
simulation models, particularly for policy analysis. Policy-relevant models or modelling systems 
continue to increase in complexity due to demands like capturing agent heterogeneity or linking 
economic and biophysical models. This complexity generates significant computational demands 
in application and calibration. 
 
As a specific example, consider ABMs that are increasingly used as tools to analyse agricultural 
and environmental economic issues (Happe et al., 2006; Manson and Evans, 2007; Rasch et al., 
2017). Even though they are well suited to analyse dynamic relationships and emergent 
phenomena arising from complex interactions between individual agents, their regional coverage, 
the number of agents or the modeled complexity of agents’ behaviour is usually limited - among 
other reasons - by computational constraints. Despite substantial advances in recent years, 
calibration of ABMs remains a further challenge (Fagiolo et al., 2017; Windrum et al., 2007). 
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What ML can add 
ML has potential to address both computational demands of complex simulation models and their 
calibration. In both cases, surrogate modeling, also called meta-modeling or response surface 
modeling, offers opportunities. A surrogate model approximates the mapping between inputs and 
outputs of an underlying complex model. The basic aim of the surrogate model is to approximate 
the behavior of the underlying model while being computationally cheaper to run. What makes 
this approach potentially more powerful compared to previous meta-modeling approaches is that 
the accuracy and dimensionality of the prediction is only restricted by the amount of data 
generated by the model to be approximated. Other disciplines have started to exploit this 
approach. Surrogate models are intensively used in engineering (Forrester et al., 2008; Koziel 
and Leifsson, 2013), natural science such as water resources modelling (Razavi et al., 2012) and 
weather forecasting (Kim et al., 2015). Established approaches include approximations using 
polynomial models, radial base function models, kriging, multivariate adaptive regression splines, 
and support vector machines (Forrester et al., 2008; Kleijnen, 2009). Recently, random forests 
and NN are also being used (Gong et al., 2015). NN are of particular interest because they can 
handle multi-output models (Razavi et al., 2012). Recent advances in ML make the surrogate 
modelling approach more compelling, for example by using RNN or CNN (e.g. Guo et al., 2016) 
to handle sequential or spatial data and to reflect model dynamics (see section 3.3). Appendix A2 
provides a more detailed exposition about how surrogate modeling can beneficial for ABM 
modeling of farm structural change.    
 
Surrogate models can also be used for model calibration and are intensively applied for this 
purpose in water resource modeling (Asher et al., 2015; Razavi et al., 2012), land surface models 
(Gong et al., 2015), building-energy demand (Nagpal et al., 2018) and material science (Mareš et 
al., 2016). Similarly, they are also used for sensitivity analysis for complex models of physical 
systems (Tripathy and Bilionis, 2018). The basic idea of using surrogate models for calibration is 
that in a first step, a surrogate model is trained on a sample of simulated model outcomes and 
then in a second step, a calibration is performed based on that surrogate model to find the 
parameter values that most closely match the empirically observed data. This approach still 
requires a relatively large number of runs of the underlying model to generate the sample to train 
the surrogate model. To alleviate that problem, approaches such as adaptive sampling (Wang et 
al., 2014; Xiao et al., 2018) or iterative calibration are available (Lamperti et al., 2017). A challenge 
related to both issues is the choice of an appropriate loss function used to compare model 
outcomes with surrogate model outcomes or observed characteristics, particularly for dynamic 
models (Barde, 2017; Guerini and Moneta, 2017; Lamperti, 2018).  
 
There may be potential for improving calibration by leveraging ideas from Generative Adversarial 
Nets (GANs) (Goodfellow et al., 2014). GANs train a generator, such as for images, together with 
discriminator model. The generator aims to learn to generate images that are similar to actual 
images while the discriminator aims to learn how to efficiently distinguish between generated 
images and actual images. Feeding discriminator outcomes back to the generator improve its 
performance in an iterative approach. In the context of model calibration, the model generator 
could explore in which way to tune the parameters of the model such that the generated output 
data is as close as possible to the observed data, while the discriminator is trained to distinguish 
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generated from observed data. The advantage of such an approach would be that no criteria for 
comparison would need to be specified a priori, with the discriminator learning itself which features 
are most useful for detecting generated data; while the generator would aim to mimic the observed 
data as closely as possible. Such an approach could in principle be applied for calibration where 
we aim to generate observations that closely replicate observed inputs and outputs, as well as for 
surrogate modeling where we aim to generate observations from the surrogate model that are as 
close as possible to the output generated by the true model.  
 
Further connections between theory-based simulations models and ML approaches are 
discussed in physics (de Bezenac et al., 2017; Karpatne et al., 2017). They propose hybrid models 
where outcomes from theoretically-based simulation models are used to initialize or pre-train ML 
models, to complete missing observational data or for statistical downscaling of simulation model 
results.  

4. What economists can add to ML  
Novel ML approaches have led to important breakthroughs and many disciplines are exploring 
the potential of ML, including economics. One central challenge facing ML is to unite data-driven 
ML methods with the amassed theoretical disciplinary knowledge (Karpatne et al., 2017). Why is 
this relevant? Why are purely data driven models not sufficient (as argued by Anderson et al., 
2008)? Despite the increase in data availability, in many applications, we still face a shortage of 
data and their labels. An example is Blumenstock et al. (2015), mentioned above, who, despite 
of having billions of phone records, can only link them to less than 900 survey respondents for 
whom labeled data are available. Even with lots of data, the information contained in the data 
might be insufficient for prediction or identification, for example when dealing with rare events, 
when the variation in the outcome variable is small, or if outcomes are very noisy. Even “big data” 
might be insufficient when dealing with highly complex processes and non-stationary patterns that 
change dynamically, such as in climate science (Karpatne et al., 2017). In all of these settings, 
the risk of picking up spurious correlations and discovering relationships that do not generalize is 
high. The google flu prediction is an example in this respect (Lazer et al., 2014). 
 
Theoretical knowledge can help with these data challenges in two ways. First, theoretical domain 
knowledge is necessary to understand why a model works and if it has learned plausible 
relationships. For this, models need to be interpretable (see section 2.5). Understanding why a 
model works is also crucial to assess when it will stop working. Second, incorporating theoretical 
knowledge can increase the efficiency of ML approaches (see section 3.1), particularly in the 
described settings where the information in the data is limited and processes are complex.  
 
Karpatne et al. (2017, p. 2) call for a “novel paradigm that uses the unique capability of data 
science models to automatically learn patterns and models from large data, without ignoring the 
treasure of accumulated scientific knowledge”. In this respect, econometrics has a natural role to 
play, as an approach that uses statistical methods and combines them with theoretical knowledge 
to answer economics questions. The development of approaches to include theoretical or prior 
knowledge in novel ML approaches is a relatively young research field, with several contributions 
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from climate and material science (Faghmous et al., 2014; Faghmous and Kumar, 2014; Ganguly 
et al., 2014; Karpatne et al., 2017; Sheikh and Jahirabadkar, 2018; Wagner and Rondinelli, 2016). 
Economists should closely follow and contribute to these developments. 
 
Another set of problems are issues surrounding the data themselves. While novel data sources 
hold exciting potential, they often come with issues of selection bias. For example, cell phone 
data are only available for those with access to cell phones; the quality of labels may vary by 
country or region. Economist are trained to think about these selection problems and theoretical 
knowledge useful to assess their importance and to handle them. Finally, the scarcity of labeled 
(ground truth) data versus the abundance of unlabeled data often constrains the usefulness of 
‘big’ data for economics. As noted above (section 3.2), unsupervised learning approaches can 
help to some extent but transfer learning approaches, as in Jean et al. (2016), that takes into 
account theoretical understanding of the underlying processes might be more efficient. 

5. Frontier 
We conclude by highlighting a few current developments in ML that are particularly relevant for 
agricultural and applied economics. As noted in the causal section (3.4), applying ML methods to 
causal analysis is a new and growing field. Thinking carefully how to control for unobservables in 
highly non-linear settings and comparing ML to traditional identification methods are all areas that 
are ripe for investigation.  
 
The imposition of structural information when training ML models may improve their predictive 
performance. As discussed in section 4, methods are available that allow the use of disciplinary 
knowledge when training ML models. Economic theory often provides information on the 
curvature of behavioural functions (production frontiers, profit functions) or the sign of marginal 
effects. Such additional structural information may especially help in situations with limited data 
availability and complex interactive relationships between features.  
 
The combination of supervised and unsupervised approaches to improve predictions (and thereby 
also causal analysis) seems to be currently underexplored in applied economic analysis (see 
section 3.2). The potential to combine high resolution biophysical data with limited amounts of 
labeled economic data may offer many additional opportunities to enrich our models. Questions 
such as estimating land use choices driven by climate change, or estimating nutrient emissions 
over space could significantly benefit from allowing for more complexity in the biophysical 
components of our models. A better understanding about the performance of the ML methods in 
this context could also inspire targeted data collection of labeled data for this purpose.  
 
The recent engagement of economists with ML tools is generating increased attention to the 
derivation of statistical properties of ML estimators which is crucial for appropriate statistical 
inference in the field. But new approaches in probabilistic programming developed within the ML 
community (Bingham et al., 2018; Tran et al., 2017) with clear Bayesian interpretations of model 
outcomes may offer a natural way of combining ML with procedures for statistical inference. An 
interesting promise of probabilistic programming is to move from the case-specific development 
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of variational inference procedures to a generic approach only requiring the specification of a 
probabilistic economic model from which one can generate a random sample (Ghahramani, 
2015). 
 
Recent ML advances also hold potential for simulation models. First, apart from supervised and 
unsupervised learning, reinforcement learning approaches comprise a third class of ML 
algorithms. In reinforcement learning the aim is to learn optimal behavior facing a reactive 
environment. These approaches recently gained popularity due to, among others, their successful 
application in playing the board game Go (Silver et al., 2016). Reinforcement approaches are 
relevant in situations where a function can be specified that provides a reward for a chosen action 
in a given situation. The algorithm learns by choosing different actions and observing the 
associated rewards. As such, reinforcement learning is an optimization approach. However, they 
are particularly well suited for sequential setups where agents take multiple actions in sequence 
and previous actions influence the outcome of following actions and feedback is not instantaneous 
but delayed. They can also handle an uncertain environment with outcomes that are not 
deterministic. Reinforcement learning is increasingly used in game-theoretical settings but with 
limited policy relevance so far (Chen, 2017; Fudenberg and Levine, 2016). Further development 
may have potential for models with learning agents in more descriptive, policy relevant models 
where, for example, agents make optimal strategic choices learning from their own experience 
and information provided by their environment (networks). Second, GANs (section 3.5) pose an 
interesting opportunity to calibrate simulations models to available data without having to select, 
a-priori, specific, limited features of the data to calibrate to. The interplay between generator and 
discriminator algorithms would allow the approach to learn what features matter in distinguishing 
model outcomes from observations and to exploit complex data structures for this purpose. 
Knowing the purpose of the simulation model may help restrict the calibration approach for 
targeted performance, but the GANs might make restricted choices of features less ad-hoc and 
the resulting simulation model more generally valid.  
 
Last, a new and active area of ML research facilitates the distributed training of models on multiple 
datasets, where these datasets do not need to be shared. Given machine learning’s powerful 
abilities to derive information from data, merely removing personal identifiers has been shown to 
be insufficient to preserve participants’ identity. Further, data breaches are becoming more 
common, raising concerns for academics collecting or analyzing confidential data. Privacy-
preserving machine learning may be important to economists in the future, both to allow for the 
use of confidential data and to facilitate collaboration. 
 
In summary, machine learning methods already have demonstrated great potential in improving 
prediction and computational power in economic analysis. The next few years will undoubtedly 
see more of these tools tailored and applied to economics. While it may be difficult to keep up 
with all of the advances as they appear, we hope that this article gives readers an entry-point with 
which to start to engage these exciting methods (appendix A3 provides additional hints on how to 
get started). 
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