USC Center for Sustainability Solutions

A New Approach to Measuring Climate Change Impacts and Adaptation

Antonio M. Bento University of Southern California & NBER

with Mehreen Mokerjen and Edson Severnini

March 2019

- It is unlikely that International Organizations and the U.S. Federal Government will make progress on comprehensive climate mitigation programs
- Failure to achieve climate mitigation goals puts even more pressure on developing strategies for climate adaptation

- To advance on Climate Adaptation Strategies, need to understand 2 key issues:
 - How to conceptualize and empirically measure Climate Change – the need to disentangle shortrun/unexpected shocks from changes in longrun trends
 - How to define and measure Adaptation how much adaptation could potentially be achieved through policy and regulatory frameworks

Purpose of the Paper

- Develop a new approach to measuring climate impacts; define and measure adaptation
 - o Decompose meteorological variables into 2 components
 - Long-run trends measured as monthly moving averages from the previous 3 decades
 - Short-run (unexpected) shocks measured as deviation from the 30-year MA (climate normal)
 - To measure climate impacts and adaptation use those
 2 components associated with climate in the <u>same</u>
 estimating equation
 - Working concept of Adaptation difference between the impact of the trend and the shock

Purpose of the Paper

- Provide some of the first estimates of the relative role of 'regulation-induced' vis-à-vis 'residual' adaptation
 - Ideal application: Impact of Climate on Ozone and the so-called "Climate Penalty"
 - Role that Climatic variables play in Ozone formation and the relatively short time it takes for the production to occur
 - Seasonality of Ozone similar to 'climate experiment'
 - Ozone is regulated under the Clean Air Act allowing for comparing how nonattainment/attainment counties adapt

3 main sources of Data spanning multiple decades

- Ozone Data daily readings from the nationwide network of EPA's air quality monitoring stations
 - unbalanced panel of monitors with valid information in the Ozone Season (April-September)
- Attainment Designations data on the attainment designations at the county level (EPA and Green Book of Non-Attainment areas for criteria pollutants)
- Weather Data daily measurements of maximum and minimum temperature as well as total precipitation from NOAA

Measurement of Climate Change: Trends and Shocks

$Temp_{idmy} = Temp_{im,y-1}^{C} + Temp_{idmy}^{W}$

○ Temp^C – 30-year MA of past temp (Climate Normal)

- we consider monthly MAs because it is more likely that individuals recall climate patterns by month
 - example: the 30-year MA associated with May 1982 is the average of May temperatures for all years in the period of 1952-1981
 - to make this variable part of the information set held by agents, we lag it by one year (robustness checks): potential for adaptation
- Temp^W weather shock measured as the deviation of the daily temperature from the lagged 30-year monthly MA
 - these shocks are revealed to economic agents only at the time when the outcome variable of interest is being measured: limited potential for adaptation

Average Temperature in the US

Measurement of Climate Change: Average Climate Trend

Measurement of Climate Change: Climate Shock

$Ozone_{icdmy} = \alpha + \beta_T^W Temp_{idmy}^W + \beta_T^C Temp_{im,y-1}^C + \gamma CAANAS_{c,y-3}$

$$+ Prcp_{icdmy}\delta + \lambda_{sy}Z_i + \eta_i + \phi_{rsy} + \varepsilon_{idmy},$$

where i represents an ozone monitor located in county c in NOAA climate region r,

and d stands for day, m for month, s for season (Spring or Summer), and y for year

CAANAS (Clean Air Act Non-Attainment Status): binary variable equals to one for

counties out of attainment with the NAAQS for Ozone

Z represents time-invariant covariates (latitude and longitude of ozone monitors), which are interacted with season-by-year fixed effects

 $\boldsymbol{\Phi}$ represents region-by-season-by-year fixed effects

Empirical Strategy

$Ozone_{icdmy} = \alpha + \beta_T^W Temp_{idmy}^W + \beta_T^C Temp_{im,y-1}^C + \gamma CAANAS_{c,y-3}$

$+ Prcp_{icdmy}\delta + \lambda_{sy}Z_i + \eta_i + \phi_{rsy} + \varepsilon_{idmy},$

- Exploit random, daily variation in weather, and monthly variation in climate normals within a season
- Identification of the impact of weather shocks monitor level daily variation in the deviation of meteorological variables from lagged climate normals, after controlling for regional shocks at the season-byyear level
- Identification of the impact of climate trend changes monitor level monthly variation in lagged 30-year MA of meteorological variables after controlling for regional shocks at the season-by-year level
 - we ask: what happens to Ozone in a May 1982 day when the normal temp. around the monitor in May 1981 is 1°C warmer than the average of all 30-year monthly MAs of temperature in the Northeast in the Spring of 1981?

Empirical Strategy

$$\begin{split} Ozone_{icdmy} &= \alpha + \beta_{TA}^{W}(Temp_{idmy}^{W} \times CAAAS_{c,y-3}) + \beta_{TA}^{C}(Temp_{im,y-1}^{C} \times CAAAS_{c,y-3}) \\ &+ \beta_{TN}^{W}(Temp_{idmy}^{W} \times CAANAS_{c,y-3}) + \beta_{TN}^{C}(Temp_{im,y-1}^{C} \times CAANAS_{c,y-3}) \\ &+ \gamma CAANAS_{c,y-3} + Prcp_{icdmy}\delta + \lambda_{sy}Z_{i} + \eta_{i} + \phi_{rsy} + \varepsilon_{idmy}, \end{split}$$

Interact two components of temperature with attainment status (CAAAS) and non-attainment status (CAANAS) to uncover measures of 'regulation-induced' vs. 'residual' adaptation

	Daily Max Ozone Levels (ppb)		Adapt	ation
	Ι	II	III	IV
Temperature Shock	1.6942***			
Climate Trend	(0.0254) 1.2423^{***} (0.0239)		0.4519^{***} (0.021)	
Attainment x Shock		1.3025^{***}		
Attainment x Trend		$(0.0191) \\ 0.9767^{***} \\ (0.0219)$		0.3258^{***} (0.020)
Non-Attainment x Shock		1.9991^{***} (0.0335)		
Non-Attainment x Trend		(1.4509^{***}) (0.0283)		$\begin{array}{c} 0.5482^{***} \\ (0.029) \end{array}$
Observations R^2	$4,974,155 \\ 0.4225$	$4,974,155 \\ 0.4286$		

Robustness Checks

- Concern with attenuation bias from measurement error in the climate trend—vary lengths of the Climate Trend — 3, 5, 10, and 20 years moving average;
- Concern about the amount of time given to the economic agent to respond to changes in the climate trend – central specification give 1 year, robustness: allow for 10 and 20 years – suggestive of myopic behavior, since it appears that agents respond mostly to the more recent changes
- Concern about potential underestimation of temperature shocks due to opportunities of immediate adaptation – look at action day forecasts (ozone alert) and interact with shock; find nothing

Ozone Formation:

A Leontief-style Production Function

Differential adaptation based on VOC/NOX?

	Daily Max Ozone Levels (ppb)					
	Main Specification Limited Sample		Limited Counties Limited Sample		Limited Counties Adaptation	
	Ι	II	III	IV	V	VI
Temperature Shock	2.0848^{***} (0.0506)		2.1360^{***} (0.0600)			
x VOC-Limited	()		-0.0954 (0.0529)			
x NOx-Limited			-0.5195^{***} (0.1314)			
Climate Trend	1.4598^{***} (0.0520)		1.4829^{***} (0.0563)		0.6531^{***} (0.0545)	
x VOC-Limited	()		$\begin{bmatrix} -0.0255\\ (0.0527) \end{bmatrix}$		-0.0698 (0.0614)	
x NOx-Limited			(0.0831)		(0.1172) (0.1300)	

Steps:

- Created terciles of the VOC/NOX ratio
- Interacted the shock and trend with the bottom and top tercile; temperature shock reflects the middle tercile; if production function of Ozone is correct interaction should be higher in the middle tercile

Are there limits to Adaptation?

	Daily Max Ozone Levels (ppb)			
	Near NAAQS		Adap	tation
	Ι	II	III	IV
Temperature Shock	0.5168***			
Climate Trend	$egin{array}{c} (0.0108) \ 0.4930^{***} \ (0.0110) \end{array}$		0.0238^{*} (0.0110)	
Attainment x Shock		0.3876***		
Attainment x Trend		$(0.0100) \\ 0.3970^{***} \\ (0.0108)$		-0.0094 (0.0093)
Non-Attainment x Shock		0.6069^{***} (0.0145)		
Non-Attainment x Trend		0.5757^{***} (0.0132)		0.0312^{*} (0.0155)
Observations R^2		$670,122 \\ 0.8260$		

Further evidence on the limits to adaptation

	Daily Max Ozone Levels (ppb)			
	AQI Category Adaptation			
	I	II		
AQI Good x Shock	0.6481^{***}			
AOI Cood & Trand	(0.0105)	0.257***		
AQI Good x Trend	(0.0140)	(0.015)		
	``´``			
AQI Moderate x Shock	0.8400^{***}			
AOI Moderate x Trend	(0.0171) 0.7244***	0 116***		
ngi modelate x fiend	(0.0135)	(0.014)		
AQI Sensitive x Shock	1.2885^{***}			
0	(0.0278)			
AQI Sensitive x Trend	1.0578^{***}	0.231^{***}		
	(0.0153)	(0.026)		
AQI Unhealthy x Shock	2.3474^{***}			
	(0.0996)			
AQI Unhealthy x Shock	1.6493^{***}	0.698***		
	(0.0473)	(0.095)		
Observations	$4,\!974,\!155$			
R^2	0.6590			

• Explore results by Decade – greater opportunities to adapt lead to greater adaptation; this happens in earlier decades

Welfare Costs of the Climate Penalty

	Panel A. Non-Attainment Counties				
	1°C Increase	RCP 4.5	Scenario	RCP 8.5	Scenario
		2050	2100	2050	2100
Costs (Millions 2015USD / year) Without Adaptation	1,700	2,381	4,762	2,721	8,164
With Adaptation	$1,\!234$	1,728	3,456	1,975	5,925
Savings (Millions 2015USD / year) From Adaptation	466	652	1,305	746	2,238
NAAQS Induced Adaptation	187	264	529	302	908
	Panel B. All Counties in Sample				
Costs (Millions 2015USD / year) Without Adaptation	2,519	$3,\!527$	7,054	4,031	12,093
With Adaptation	$1,\!847$	$2,\!586$	$5,\!173$	$2,\!956$	8,868
Savings (Millions 2015USD / year) From Adaptation	672	940	1,881	1,075	3,225

Conclusions

- Proposed a new method for measuring the costs of climate change and opportunities for adaptation in a unified framework
- Allow for studying regulation-induced adaptation
- Adaptation is intuitively defined by the difference between the impact of the temperature shock and the trend
- In the context of ozone:
 - Highlighted the relevant and limits to adaptation through regulation-induced adaptation
 - Costs of climate are large, even after accounting for adaptation