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Blizzard of January 15 and 16th
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NYT articles
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Challenges with Anticipating Weather Impacts
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• False positives and false negatives as possible social costs: possible 
productivity losses and expenses due to alternative child care 
arrangements

• Imperfect information, especially for families, are a barrier to making 
sound decisions. In other words, making decisions under uncertainty is 
just plain hard.

Motivation



Research Goals
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• Can school closures be anticipated 
using winter weather forecasts?  (12 
hours in advance)

• Relative to NWS warnings, how would 
a school closure forecast improve the 
public’s information exposure? 

• How can information exposure be 
associated with economic impacts?

Research Goals



Roadmap

1. Motivation 
2. Considerations
3. Data + Methods
4. Results
5. Implications



Considerations: Local Exposure to Weather and Attitudes
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Each region of the country has 
different exposure to weather. 

Thus, how common closure days are 
will vary from area to area.

Considerations
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Considerations: Local Exposure to Weather and Attitudes



Considerations: Local Exposure to Weather and Attitudes
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This also meant that some 
parts of the country have 
very infrequent potential 
snow-related weather 
closures.



Considerations: Benchmark to Beat
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True Positive Rates vs. False  

Considerations

We should ask then if a warning is sufficient to 
inform a naïve observer about whether a 
school closure will happen?
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Plan of Attack
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Construct District-Day 
Data set

Train Classifier using 10-
folds cross validation

Use Cross-validated 
predictions to set 

notification thresholds
1 2 3



Generic Modeling Approach
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Gridded Weather 
Forecasts (12h horizon: 
Rain, Temp Min, Snow)

Data Collection
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School district 
closures (Wong 
et al. 2016)
(Target)

Local population 
demographics

Unit of Analysis: “District-Day 
with Forecasted Snow”Data + Methods



Plan of Attack
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Construct District-Day 
Data set

Train Classifier using 10-
folds cross validation

Use Cross-validated 
predictions to set 

notification thresholds
1 2 3
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Anatomy of Classification Model Predictions

Data + Methods

Class (Y = 1)

Class (Y = 0)
Decision Boundary  
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Beede and Chen (2018)

Choice of algorithm is important

Data + Methods



Decision trees as the Foundation of Tree Learning
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• Jagged edges due to recursive partitioning
• More flexible than regression, but tend to overfit
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Gradient Boosting
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(decision 
stump)

Sum of M-
number of trees

A major improvement over  decision trees.



Each iteration is a refinement on the last iteration
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Gradient boosting loss relies on deviance
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Train-Test Sample Partition
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Training Sample Test Sample



Training: 10-Folds Cross Validation
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Plan of Attack
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Construct District-Day 
Data set

Train Classifier using 10-
folds cross validation

Use Cross-validated 
predictions to set 

notification thresholds
1 2 3



Selecting classification threshold
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Predicted probabilities from 10-folds CV



Classification Thresholds: Modified F1-Statistic
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TPR – TNR is a positive value 
with a margin d.  



Calibrating the School Closure Classification Threshold
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1. For !p, identify a probability threshold P$ that maximizes a population-weighted 
accuracy measure;

2. Split each fold along P$; then

3. For the subset where !p > P$, apply step 1 again until a desired number of 
tiers have been defined.

P&'(.(*P&'(.(+P&'(.*
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Accuracy across geography

Predictions are best outside of the US Southeast.  
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Learned School Decisions versus Winter Warnings
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Maximum Possible Reduction of False Alarms and Missed Alarms
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Margin FN FP

Model: d = 1% 0 -146 M

Model: d = 5% -0.7 M -126 M

Model: d = 10% -1.6 M -83 M
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Day One of Blizzard (January 26, 2015)

Implications
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Day Two of Blizzard (January 27, 2015)

Implications



Wrapping up
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•Possible to anticipate closures using weather information
•Technique could refine current weather warnings with a specific target 

audience
•Demonstrates that highly granular weather information can be linked to 

economic processes – useful for economic measurement.
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