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Neural networks

y = γ1 + V 1Γ1 + ε
V 1 = a

(
γ2 + V 2Γ2)

V 2 = a
(
γ3 + V 3Γ3)

...
V L = a

(
γL +ZΓL

)
I y – a (continuous) outcome
I ε – additive error
I Z – data
I V l – “nodes”: derived variables
I a() – the “activation function”. Maps the real line to some subset

of it. Modern nets use variants of the ReLU: a(x) = max(0, x)
I Dimension of Γ1:L controls number of nodes per layer



Semiparametric neural nets

I The top layer of a neural net is an OLS regression in derived
variables V

y = γ + V Γ + ε

I It is simple to add linear terms to the model, where a
linear-in-parameters relationship is known to be appropriate:

y = γ +Xβ + V Γ + ε

I Likewise, panel structure can be accounted-for by adding
unit-specific intercepts at the top level:

yit = αi +Xitβ + VitΓ + εit



Semiparametric and panel neural nets
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Why might you want to do this?
I Statistical efficiency
I When the goal is to do prediction, but you’re working in a topic

area in which people have been doing inference and understand
the data-generating process somewhat

I When a purely nonparametric model has a hard time
representing specific kinds of structure:
I Longitudinal structure
I Secular trends
I Response heterogeneity by specific, known features

I (With caveats) for certain sorts of causal inference tasks
I 2SLS first stages
I For predictive models that need a few interpretable marginal

effects (maybe)



The method
I It has been implemented in the R package panelNNET, and a

paper on the method has been published in Environmental
Research Letters

I It achieves state-of the art predictive skill in its domain,
outperforming fully-nonparametric neural nets as well as
parametric statistical models



Model Bagged M̂SEoob

Parametric no 367.9
Semiparametric neural net no 292.8

Parametric yes 334.4
Fully-nonparametric neural net yes 638.6

Semiparametric neural net yes 251.5



Baseline parametric yield model

yit = αi +
∑
r

GDDritβr +Xitβ + εit

I Pioneered by Schlenker & Roberts (2009)

→ small shifts in heat have severe impacts on yields



Semiparametric Specification

yit = αi +
∑
r

GDDritβr +Xitβ + VitΓ + εit Γ: 100 ×1

V 1
it = a

(
γ2 + V 2

itΓ2) Γ2: 100 ×100
...

V 10
it = a

(
γ10 +WitΓ10) Γ10: many ×100

Wit =
[
Zfixed, C

(
Zdaily

)]
I Identical to parametric model, with addition of 100-node neural

network layer
I 10 layers, 50 nodes each. MANY parameters (>>N!)

Regularization is extremely important.
I C() represents a 1D convolutional layer

I In this application, convolutional layers constrain the nonlinear
interactions of daily weather to adjacent days



Training: backpropagation

Typical loss function for continuous-variable prediction problems is
the L2-penalized squared error loss:

argmin
θ

(
(y − ŷ)2 + λθT θ

)
where θ ≡ vec(Γ1,Γ2, ...,ΓL) and λ is a tunable hyperparameter
controlling model complexity

Other hyperparameters include dropout rate, batch size, learning
rate, etc.

No closed-form solution! Instead, training is done by (mini-batch)
gradient descent

Goal is a parameter set (θ) that predicts yields of years that were
withheld from the training sample



The OLS trick
Loss function can be recast as

argmin
θ

(y − ŷ)2 s.t. θ̂T θ̂ ≤ c

I λ thus implies a “budget” for deviation from zero within of θ̂
I Because gradient descent is inexact, top-level parameters of

neural net are not those that minimize loss function

min
Ψ

(y −WΨ)T (y −WΨ) + λ̃ΨTΨ

I where
I W ≡ [X,V ]
I Ψ indicates the portion of θ̂ corresponding to the top level of the

network
I λ̃ > λ is the penalty corresponding to the “budget” that is “left

over” after fitting the lower level parameters which generate V



The OLS trick
Can calculate the implicit λ̃ for the top level of the neural network by
minimizing

min
λ̃

(
BTB −ΨmTΨm

)2
where

B = (W TW + λ̃I)−1W Ty

I Replacing Ψm with B ensures that the sum of the squared
parameters at the top level of the network remains unchanged

I The (top level of the) penalized loss function reaches its
minimum subject to that constraint.

I Alternatively, separate λ’s can be specified for each layer, and the
OLS trick can pick the optimal value of λ for the top layer as
often as desired.



Fixed and random effects
I Heterogeneous intercepts can be implemented in Keras by

concatenating a tensor of dummies, and penalizing their weights
if random effects are desired
I Recall that ridge regression on cross-sectional dummies is

equivalent to a random effects model (Harville 1977, 1978)
I Keras/Tensorflow can handle estimation of thousands of dummy

effects without issue on a standard laptop

I For the fixed-effects model (i.e.: where αi is unpenalized), the
closed form solution is faster and more precise:

α̂ = (yit − ȳi)−
(
Xit − X̄i

)
β̂ −

(
Vit − V̄i

)
Γ̂

I Like the OLS trick, these can be computed every few iterations
and inserted into the model, short-circuiting gradient descent,
and speeding convergence.



Implementation in Keras/Tensorflow/R

I Keras is a high-level API for various deep learning libraries
I Tensorflow is Google’s deep learning library. Keras calls it “under

the hood,” and can run with others (Torch, Theano, CTNK, etc).
I RStudio has recently implemented a wrapper for Keras. It seems

to just call Python from R.
I Most of the user community works in Python – more resources

and support in that ecosystem

See https://github.com/cranedroesch/SNN_python/blob/master/
SNN_python.ipynb for a fixed-effects implementation in python

https://github.com/cranedroesch/SNN_python/blob/master/SNN_python.ipynb
https://github.com/cranedroesch/SNN_python/blob/master/SNN_python.ipynb


Fitting a basic neural net in Keras through R

library (keras)
library (dplyr)
X <- mtcars [,-1] %>% as. matrix
y <- mtcars [,1] %>% as. matrix
inp <- layer _input(shape = ncol(X))
# note mutability ! not common in R
layers <- inp %>%

layer _dense(units = 3, activation = "relu") %>%
layer _dense(units = 1, activation = " linear ")

model <- keras _model ( inputs = inp , outputs = layers )
model %>% compile (

loss = ’mean_ squared _error ’,
optimizer = optimizer _nadam ()

)



history <- fit(model ,
x = X,
y = y,
verbose = 1,
epochs = 200,
validation _split = .2

)
plot( history )



Representing parametric structure in Keras

Say I wanted to include a parametric term in weight and cylinders,
and let the rest get squashed into a single term

> head( mtcars )
mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1



Representing parametric structure in Keras

"%ni%" <- Negate ("%in%")
Xp <- mtcars [,c("wt", "cyl")] %>% as. matrix
Xnp <- mtcars [, colnames ( mtcars ) %ni% c("mpg", "cyl", "wt")] %>%

as. matrix
npinp <- layer _ input ( shape = ncol (Xnp ))
pinp <- layer _ input ( shape = ncol (Xp ))
nplayers <- npinp %>%

layer _ dense ( units = 3, activation = "relu")
merged <- layer _ concatenate ( list (pinp , nplayers )) %>%

layer _ dense ( units = 1, activation = " linear ")

model <- keras _ model ( inputs = c(pinp , npinp ), outputs = merged )
model %>% compile (

loss = ’mean _ squared _ error ’,
optimizer = optimizer _ nadam ()

)



Representing parametric structure in Keras
library ( kerasR )
plot _ model (model , to_ file = " model .png", show _ shapes = T,

show _ layer _ names = TRUE)



Application: dryland yield prediction
I Maize and soy yield data from the US east of 100W Longitude
I Historical weather data from METDATA (Abatzoglou 2013)

I Daily observations of min/max temperature, min/max relative
humidity, precipitation, wind speed, insolation

I 4km resolution
I Aggregated to counties and weighted by agricultural area

I Model is a semiparametric neural net with the following
parametric terms
I random (not fixed) effects
I GDD variables
I penalized cubic spline in total annual rainfall, time, and insolation

I Fit in Keras/R, developed to study SRM geoengineering



Model fit – Corn
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Model fit – Soy
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Future work
I Moving beyond feed-forward neural nets: adding parametric

time-series structure to Temporal Convolutional Networks

I Initializing the parametric component using GETS/IIS

I Applying it to spatio-temporal forecasting problems (adaptation?)

I Explicitly modeling response heterogeneity through interactive,
multi-headed architectures



Big picture

I Keras and Tensorflow are powerful and well-made
I Neural nets are general: workhorse econometric models are

nested within them (with more or less hacking)
I They’re a complement to the work that empirical economists

have always done



Resources

I See here for a Python/Keras implementation of a SNN:
github.com/cranedroesch/SNN_python/blob/master/SNN_
python.ipynb

I Code for replicating the ERL paper:
github.com/cranedroesch/ML_yield_ERL

I panelNNET source:
github.com/cranedroesch/panelNNET

github.com/cranedroesch/SNN_python/blob/master/SNN_python.ipynb
github.com/cranedroesch/SNN_python/blob/master/SNN_python.ipynb
github.com/cranedroesch/ML_yield_ERL
github.com/cranedroesch/panelNNET

