
Semiparametric neural networks

Andrew Crane-Droesch

The Workshop in Environmental Economics and Data Science,
Portland OR, March 2019

The Findings and Conclusions in This Preliminary Presentation Have Not
Been Formally Disseminated by the U.S. Department of Agriculture and
Should Not Be Construed to Represent Any Agency Determination or Policy.
This research was supported by the intramural research program of the U.S.
Department of Agriculture, Economic Research Service.

Neural networks

1 Z1 Z2 Z3 Z4

1 V1
2 V2

2 V3
2

V1
1 V2

1 V3
11

y

Representation Learning

1 temp precip wind soil

1 soil
moisture VPD GDD

heat
stress

water
stress

biomass
partitioning1

yield

Neural networks

y = γ1 + V 1Γ1 + ε
V 1 = a

(
γ2 + V 2Γ2)

V 2 = a
(
γ3 + V 3Γ3)

...
V L = a

(
γL +ZΓL

)
I y – a (continuous) outcome
I ε – additive error
I Z – data
I V l – “nodes”: derived variables
I a() – the “activation function”. Maps the real line to some subset

of it. Modern nets use variants of the ReLU: a(x) = max(0, x)
I Dimension of Γ1:L controls number of nodes per layer

Semiparametric neural nets

I The top layer of a neural net is an OLS regression in derived
variables V

y = γ + V Γ + ε

I It is simple to add linear terms to the model, where a
linear-in-parameters relationship is known to be appropriate:

y = γ +Xβ + V Γ + ε

I Likewise, panel structure can be accounted-for by adding
unit-specific intercepts at the top level:

yit = αi +Xitβ + VitΓ + εit

Semiparametric and panel neural nets

X1 X2

1 Z1 Z2 Z3 Z4

1 V1
2 V2

2 V3
2

V1
1 V2

1 V3
1αi

y

Why might you want to do this?
I Statistical efficiency
I When the goal is to do prediction, but you’re working in a topic

area in which people have been doing inference and understand
the data-generating process somewhat

I When a purely nonparametric model has a hard time
representing specific kinds of structure:
I Longitudinal structure
I Secular trends
I Response heterogeneity by specific, known features

I (With caveats) for certain sorts of causal inference tasks
I 2SLS first stages
I For predictive models that need a few interpretable marginal

effects (maybe)

The method
I It has been implemented in the R package panelNNET, and a

paper on the method has been published in Environmental
Research Letters

I It achieves state-of the art predictive skill in its domain,
outperforming fully-nonparametric neural nets as well as
parametric statistical models

Model Bagged M̂SEoob

Parametric no 367.9
Semiparametric neural net no 292.8

Parametric yes 334.4
Fully-nonparametric neural net yes 638.6

Semiparametric neural net yes 251.5

Baseline parametric yield model

yit = αi +
∑
r

GDDritβr +Xitβ + εit

I Pioneered by Schlenker & Roberts (2009)

→ small shifts in heat have severe impacts on yields

Semiparametric Specification

yit = αi +
∑
r

GDDritβr +Xitβ + VitΓ + εit Γ: 100 ×1

V 1
it = a

(
γ2 + V 2

itΓ2) Γ2: 100 ×100
...

V 10
it = a

(
γ10 +WitΓ10) Γ10: many ×100

Wit =
[
Zfixed, C

(
Zdaily

)]
I Identical to parametric model, with addition of 100-node neural

network layer
I 10 layers, 50 nodes each. MANY parameters (>>N!)

Regularization is extremely important.
I C() represents a 1D convolutional layer

I In this application, convolutional layers constrain the nonlinear
interactions of daily weather to adjacent days

Training: backpropagation

Typical loss function for continuous-variable prediction problems is
the L2-penalized squared error loss:

argmin
θ

(
(y − ŷ)2 + λθT θ

)
where θ ≡ vec(Γ1,Γ2, ...,ΓL) and λ is a tunable hyperparameter
controlling model complexity

Other hyperparameters include dropout rate, batch size, learning
rate, etc.

No closed-form solution! Instead, training is done by (mini-batch)
gradient descent

Goal is a parameter set (θ) that predicts yields of years that were
withheld from the training sample

The OLS trick
Loss function can be recast as

argmin
θ

(y − ŷ)2 s.t. θ̂T θ̂ ≤ c

I λ thus implies a “budget” for deviation from zero within of θ̂
I Because gradient descent is inexact, top-level parameters of

neural net are not those that minimize loss function

min
Ψ

(y −WΨ)T (y −WΨ) + λ̃ΨTΨ

I where
I W ≡ [X,V]
I Ψ indicates the portion of θ̂ corresponding to the top level of the

network
I λ̃ > λ is the penalty corresponding to the “budget” that is “left

over” after fitting the lower level parameters which generate V

The OLS trick
Can calculate the implicit λ̃ for the top level of the neural network by
minimizing

min
λ̃

(
BTB −ΨmTΨm

)2
where

B = (W TW + λ̃I)−1W Ty

I Replacing Ψm with B ensures that the sum of the squared
parameters at the top level of the network remains unchanged

I The (top level of the) penalized loss function reaches its
minimum subject to that constraint.

I Alternatively, separate λ’s can be specified for each layer, and the
OLS trick can pick the optimal value of λ for the top layer as
often as desired.

Fixed and random effects
I Heterogeneous intercepts can be implemented in Keras by

concatenating a tensor of dummies, and penalizing their weights
if random effects are desired
I Recall that ridge regression on cross-sectional dummies is

equivalent to a random effects model (Harville 1977, 1978)
I Keras/Tensorflow can handle estimation of thousands of dummy

effects without issue on a standard laptop

I For the fixed-effects model (i.e.: where αi is unpenalized), the
closed form solution is faster and more precise:

α̂ = (yit − ȳi)−
(
Xit − X̄i

)
β̂ −

(
Vit − V̄i

)
Γ̂

I Like the OLS trick, these can be computed every few iterations
and inserted into the model, short-circuiting gradient descent,
and speeding convergence.

Implementation in Keras/Tensorflow/R

I Keras is a high-level API for various deep learning libraries
I Tensorflow is Google’s deep learning library. Keras calls it “under

the hood,” and can run with others (Torch, Theano, CTNK, etc).
I RStudio has recently implemented a wrapper for Keras. It seems

to just call Python from R.
I Most of the user community works in Python – more resources

and support in that ecosystem

See https://github.com/cranedroesch/SNN_python/blob/master/
SNN_python.ipynb for a fixed-effects implementation in python

https://github.com/cranedroesch/SNN_python/blob/master/SNN_python.ipynb
https://github.com/cranedroesch/SNN_python/blob/master/SNN_python.ipynb

Fitting a basic neural net in Keras through R

library (keras)
library (dplyr)
X <- mtcars [,-1] %>% as. matrix
y <- mtcars [,1] %>% as. matrix
inp <- layer _input(shape = ncol(X))
note mutability ! not common in R
layers <- inp %>%

layer _dense(units = 3, activation = "relu") %>%
layer _dense(units = 1, activation = " linear ")

model <- keras _model (inputs = inp , outputs = layers)
model %>% compile (

loss = ’mean_ squared _error ’,
optimizer = optimizer _nadam ()

)

history <- fit(model ,
x = X,
y = y,
verbose = 1,
epochs = 200,
validation _split = .2

)
plot(history)

Representing parametric structure in Keras

Say I wanted to include a parametric term in weight and cylinders,
and let the rest get squashed into a single term

> head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Representing parametric structure in Keras

"%ni%" <- Negate ("%in%")
Xp <- mtcars [,c("wt", "cyl")] %>% as. matrix
Xnp <- mtcars [, colnames (mtcars) %ni% c("mpg", "cyl", "wt")] %>%

as. matrix
npinp <- layer _ input (shape = ncol (Xnp))
pinp <- layer _ input (shape = ncol (Xp))
nplayers <- npinp %>%

layer _ dense (units = 3, activation = "relu")
merged <- layer _ concatenate (list (pinp , nplayers)) %>%

layer _ dense (units = 1, activation = " linear ")

model <- keras _ model (inputs = c(pinp , npinp), outputs = merged)
model %>% compile (

loss = ’mean _ squared _ error ’,
optimizer = optimizer _ nadam ()

)

Representing parametric structure in Keras
library (kerasR)
plot _ model (model , to_ file = " model .png", show _ shapes = T,

show _ layer _ names = TRUE)

Application: dryland yield prediction
I Maize and soy yield data from the US east of 100W Longitude
I Historical weather data from METDATA (Abatzoglou 2013)

I Daily observations of min/max temperature, min/max relative
humidity, precipitation, wind speed, insolation

I 4km resolution
I Aggregated to counties and weighted by agricultural area

I Model is a semiparametric neural net with the following
parametric terms
I random (not fixed) effects
I GDD variables
I penalized cubic spline in total annual rainfall, time, and insolation

I Fit in Keras/R, developed to study SRM geoengineering

Model fit – Corn

0.00

0.25

0.50

0.75

 R2

Out of sample predictive skill −− corn

Model fit – Soy

0.00

0.25

0.50

0.75

 R2

Out of sample predictive skill −− soy

Future work
I Moving beyond feed-forward neural nets: adding parametric

time-series structure to Temporal Convolutional Networks

I Initializing the parametric component using GETS/IIS

I Applying it to spatio-temporal forecasting problems (adaptation?)

I Explicitly modeling response heterogeneity through interactive,
multi-headed architectures

Big picture

I Keras and Tensorflow are powerful and well-made
I Neural nets are general: workhorse econometric models are

nested within them (with more or less hacking)
I They’re a complement to the work that empirical economists

have always done

Resources

I See here for a Python/Keras implementation of a SNN:
github.com/cranedroesch/SNN_python/blob/master/SNN_
python.ipynb

I Code for replicating the ERL paper:
github.com/cranedroesch/ML_yield_ERL

I panelNNET source:
github.com/cranedroesch/panelNNET

github.com/cranedroesch/SNN_python/blob/master/SNN_python.ipynb
github.com/cranedroesch/SNN_python/blob/master/SNN_python.ipynb
github.com/cranedroesch/ML_yield_ERL
github.com/cranedroesch/panelNNET

