From Big Data to Big Decisions

better data + better analytics = better policy?
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Sparse network of EPA PM2.5monitors Satellite-based estimates (Van Donkelaar et al 2019)



Data improvements -> welfare improvements?

* Policy is one essential lever for translating research insights into
welfare improvements.

* But the causal relationship between environmental policy
implementation and health/welfare is complicated.
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How to act on new data/analysis?
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PM2.5 101

e Particulate matter (PM) with a
diameter of less than 2.5
micrometers.

* Exposure measured in pg/m3.

* Chemically ambiguous: volcanoes,
dust storms, fires, human activity
such as power plants and gasoline
combustion.

* Composition (and health impact?)
depends on the source.
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These small particulates are a big deal

* Muller and Mendelsohn (2007) estimate that health impacts of

PM2.5 (primary + secondary ) accounts for over 90% of total gross
annual damages from air pollution (US)

Mortality impacts of PM2.5 exposure:

* >98% of benefits of last revision of PM2.5 national air quality
standards.

e >94% of benefits from proposed “Affordable Clean Energy (ACE)
rule”

* >99% of benefits from (now endangered) Mercury and Toxics rule.



My (wishful) model of how research can impact
real-world policy outcomes

Charackerin¢ The Polluﬁuu
problem
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Beyond the glare of Washington, President Trump’s

retreat on the environment is unfolding in consequential

ways for the health and safety of Americans.

Air Pollution Denial Could
Become EPA Policy

For decades, the agency has said that inhaling soot in any amount is unsafe.
The Trump administration might change that.

ENVIRONMENT

EPA Science Panel Considering
Guidelines That Upend Basic Air
Pollution Science

March 28. 2019 - 6:34 PM ET



Characterizing health impacts of PM2.5 exposure
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Table 5-21. Total Estimated Monetized Benefits of the for Revised and Alternative Annual

Primary PM, s Standards (Incremental to the Analytical Baseline) (billions of
2006$) *°

Benefits Estimate 13 pg/m’ 12 pg/m’ 11 pg/m

Economic value of avoided PM, s related morbidities and premature deaths using PM, ; mortality estimate from
Krewski et al. (2009)

3% discount rate S1.3+8B S4.0 +B S13 +B
7% discount rate S1.2+8B S3.6 +B S12 +B

Economic value of avoided PM, s related morbidities and premature deaths using PM, ; mortality estimate from
Lepeule et al. (2012)

3% discount rate S2.9+B $9.1 +B S29 +B

7% discount rate S2.6+B S8.2 +B S26 + B

Source: Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality Standards for Particulate Matter



Where do these estimates come from?

Ay =1 — (eF2%)y, - Pop (5.1)

where ypis the baseline incidence rate for the health endpoint being quantified (for example, a
health impact function quantifying changes in mortality would use the baseline, or background,
mortality rate for the given population of interest); Pop is the population affected by the
change in air quality; Ax is the change in air quality; and B is the effect coefficient drawn from

the epidemiological study. Figure 5-1 provides a simplified overview of this approach.

Source: Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality Standards for Particulate Matter



Where do these estimates come from?

e Harvard 6 Cities Study: Adults (25-74 years) randomly sampled from 6 cities in
1970s with PM2.5 monitors.

* Krewski et al. (2009) conduct extended (18 years) follow up and re-analysis to
evaluate concerns about potential confounds, spatial auto-correlation
e Hazard ratio elevated by 3-15% for each 10 ug/m?3 increase.

* Intra-urban analysis in NYC and LA estimate “strikingly dissimilar” associations between
exposure and mortality.

* Lepeule et al. (2012) incorporates lower exposures and evaluates alternative
lags/CR-relationships.
* 10 ug/m3 associated with an increase in all cause (lung cancer) mortality of 14% (37%)
* 1-3 year lag yields best fit.



Concerns and limitations?
(Krewski et al. 2009; Lepeule et al. 2012)

* Omitted variable bias: “there is potential for important residual
confounding with unmeasured factors”

* Heterogeneous treatment: “Relative toxicity of particle elements
remains highly controversial”

* Divergent intra-urban results: “our results argue for caution in
extrapolating from on metro area to another”

* Exposure assessment: “Use of central monitoring stations as a proxy
measure of mean personal exposure is prone to measurement error”



Cue the econometricians!

The Mortality and Medical Costs of Air Pollution: Evidence from Changes in
Wind Direction
By TATYANA DERYUGINA, GARTH HEUTEL, NOLAN H. MILLER,
DAVID MOLITOR, AND JULIAN REIF
March 2019



PM2.5 concentration instrument: Daily wind direction

San Francisco, CA regional wind direction and pollution

PM 2.5 (ug/m?) relative to wind from the West (W)
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Figure 2. Relationship between daily average wind direction and PM 2.5 concentrations for
counties in and around the Bay Area, CA. The left panel shows regression estimates of equation
(A1) from the Online Appendix. where the dependent variable is the county average daily PM 2.5
concentration and the key independent vaniables are a set of indicators for the daily wind direction
falling into a particular 10-degree angle bin. Controls include county, month-by-year, and state-
by-month fixed effects, as well as a flexible function of maximum and minimum temperatures,
precipitation, wind speed. and the interactions between them. The dashed lines represent 95
percent confidence intervals based on robust standard errors. The right panel shows the location
of the PM 2.5 pollution monitors (black dots) in the Bay Area that provided the pollution measures
for this regression.



Table 2: OLS and IV estimates of effect of PM 2.5 on elderly mortality, by age group

(1 2) 3) 4) (5 (6)
65+ 65-69 70-74 75-719 80-84 85+
Panel A: OLS estimates
PM 2.5 (ug/m?) 00054+ 0.041%% 0.029 0.022 0.1424%+ 0.425%%+
(Qo21) (0.014) (0.018) (0.022) (0.036) (0.072)
Dep. var mean 385 131 197 312 508 L1227
Effect mlative to mean, percent 0025 0032 0.015 0.007 0.028 0.038
Observations 1,980,549 1,980,549 1,980,549 1,980,549 1,980,549 1,980,549
Adjused R-squared 0254 0.080 0.085 0.082 0.077 0.110
Panel B: IV estimates
PM25 (pg/ma) 0.6R54++ 0.2674% 03204+ 0.3484** D.RTT*** 24104+
(0061) (0.066) (0.068) (0.098) (0.159) (0.246)
F-statistic 208 285 202 303 309 315
Dep. var mean 385 131 197 312 508 1,127
Effect mlative to mean, percent 0178 0204 0.167 0.111 0.173 0.215
Observations 1,980,549 1,980,549 1,980,549 1,980,549 1,980,549 1,980,549

Notes Table mports OLS and IV estimates of equation (1) from the main ®ext Dependent variable is the three-day mortality rate per million
beneficianes in the mievant age group. All regressions mclude county, month-by-year, and state-by-month fixed effects; flexible coatrols for
temperatures, precipitation, and wind speed; and two leads of these weather coatrols. OLS (IV) estimates also include two lags and two keads of
PM 2.5 (instruments). Estimates are weighted by the number of beneficiaries in the mievant age group. Standard errors, clustered by county, are
reported in parentheses. *** p < 0.01,** p < 0.05,* p < 0.10.



Unleash machine learning on health benefit estimation

Total Life Years = ), LE; X M; (5.2)

where LE; is the average remaining life expectancy for age interval i, M; is the estimated change

in number of deaths in age interval i, and n is the number of age intervals.

Source: Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality Standards for Particulate Matter

Estimating life-years lost is challenging because counterfactual life expectancy is
unobserved.

Standard approaches overstate years lost if individuals impacted by pollution have
shorter life expectancies.

Use machine learning techniques to predict individual life expectancy using 1,062
variables on health history

Improved estimates reduce counterfactual life expectancy significantly!



Predicted Life Expectancy, in Years
For Medicare FFS beneficiaries who later die within one year
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Figure 5. Average life expectancy for continuously enrolled F¥S Medicare beneficiaries who
later die within one vear, 2001-2013. Life expectancy for each beneficiary is estimated as of
January 1 of the calendar year of death. Estimates for “Medicare FFS average™ are produced by
MLE estimation of survival model (6) with no covariates. Estimates for “Cox (age, sex)” and “Cox
(age, sex, cc) are produced by estimating the survival model (6) using age and sex, and age, sex
and 27 chronic conditions, as predictors, respectively. Estimates for “Cox-Lasso™ are produced by
machine learning estimation of the survival model (7) with 1,062 predictors (including
interactions). Estimates for survival random forest are produced by machine learning estimation
using the same predictors as Cox-Lasso.



Policy relevant? Yes, but....

 Emphasis on short-run variation could limit the impact of these findings.

“When choosing between using short-term studies or cohort studies for
estimating mortality benefits.. it is essential to use longer-run studies to

capture the important effects”

* |dentification strategy complicates interpretation — are we capturing kale
or KFC?

* Reliance on sparse monitors is also limiting....



Some related work in the works...
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Satellite-based estimates present challenges!

(a) Di et al. (b) van Donkelaar et al. (2019)
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Figure 2. : Comparing PMs 5: Monitors’ Measurements vs. Satellite-Based Estimates

NOTES: These figures display the relationships between satellite-based pollution measurements and monitor based
pollution measurements for the 911 census block groups that contain an EPA PMs 5 monitor. The blue boxes
depict the range of estimates (2.5'"-97.5*" percentiles) from the satellite-based datasets (y axis) for the given PMa 5
level measured by the EPA-AQS monitor (x axis). Source: Authors, Di et al. (2016), van Donkelaar et al. (2019),
EPA-AQS.



Mapping exposure to damages to S is only half the battle!

Policy Inputs
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Emission Inventory Module

. Spatial distribution of background - Gaussian Plume Model: Atmospheric
concentrations dispersion of pollutants
. Spatial coordinates of point sources . APEEP model: Atmospheric chemical
. Sulfur, nitrogen and fine particulates reactions
emission rates for coal-fired power
plants
Concentrations
Economic Valuation Module Health Impacts Module
VSL datasets for mortality related Dose-Response functions based on
evaluation RR factors for both chronic and acute
. WTP datasets for hospital admission exposure
based on local epidemic WTP studies . Baseline incidences dataset for

individual health endpoints
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Zhang et al. 2019
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Ye olde fashioned integrated assessment model
(Kruomck et al. 1998)
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APEEP/AP2/A3 integrated assessment model
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Policy design and implementation implications?

Charackerize The polluﬁun
problemn
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What does an economist want to do with source-specific damages?

Marginal abatement cost (MAC): Marginal abatement cost (MAC):
High damage firm ($/ton) Low damage firm ($/ton)
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$ 4000

Damages
: $1000/ton of emissions
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Emissions 20 Emissions
(tons/year)
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Market-Based Emissions Regulation When Damages
Vary across Sources: What Are the Gains from
Differentiation?

Meredith Fowlie and Nicholas Muller

RECEIVED: Feb 11, 2017 ACCEPTED: June 25, 2018 ONLINE: Mar 26, 2019
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Some real-world complications....

6.0e-04

 Differentiated policy designs welfare
dominate under certain and
complete information.

4.0e-04

* Once uncertainty is introduced, the
welfare implications of policy
differentiation much more
ambiguous.

Density

2.0e-04

* Uncertainty about abatement costs
further complicates design of
guantity-based instruments!
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Policy experimentation in progress.....
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Community-oriented process to monitor air quality kicks

off tomorrow
Mara Kardas-Nelson on November 6, 2018
“Community based” response to PM hotspots First differentiated pollution tax
California China

How can we best use the data and methods we’re talking about today to inform and improve the policy
designs that can change outcomes?



Data -> policy change...

* Exciting innovations on multiple
fronts — data collection, data
analytics, policy incentive design,
policy implementation.

* Substantive interactions between
data/methods/policy/communication
types increases the chances that
research can respond to policy needs 4 :
and policy can respond to research environment

insights. datasci
econ

* Great job, Ed Rubin et al.



Research -> policy change -> impact



Mapping exposures to impacts is complicated!

* Non-linear concentration-response (C-R) function?

» Differences in the underlying stock of health and/or
defensive investments?

 Differences in composition?!

Different marginal effects due Different marginal effects
to different baseline exposure due to different vulnerability
(homogenous response surface) (covariates determine response)
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Which PM2.5 effects count?

e Short-run studies relate day-to-day changes in PM2.5 concentrations to
changes in mortality rates several days following.

* Longer-run studies examine the relationships between PM2.5 exposure
over multiple years and annual mortality rates that have been adjusted for
individual level risk factors.

“When choosing between using short-term studies or longer-run studies for
estimating mortality benefits.. it is essential to use the cohort studies to
capture the important effects”

Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality Standards for Particulate
Matter, February 2013.



TABLE 10. Co-bencfits of the MATS in 2016 (billions of

Direct mercury

benefits of MATS in

2016

(millions of 2007%)

3%

$4.2-56.2

7%

$0.47-51.0

2007%)
Total

Effect Pollutant

3% 7%
Adult premature death (Pope)* PM> s $34  $30
Adult premarture death (Laden)? PM> s $87 $78
Infant premature deaths PM> s $0.2 $0.2
Chronic bronchitis PM> s $1.4 $1.4
Nonfatal hearrt attacks PM> s $0.5 $0.4
Hospital admissions (respiratory PM2s $0.04 $0.04
and cardiovascular)
Minor restricted activity days PM> s $0.2 $0.2
CO»-related co-benefits CO> $0.36 50.36
Total using Pope $37 $33
Toral using Laden $90  $81

“Estimatces from Pope ct al. [12].

*Estimartes from Laden er al. [15].

Sourcc: Regulatory Impact Analysis, Tables ES-3 and ES-4.1.




Noisy welfare gains!

Tax
Change in annual $13
costs (SM)
Changein 860
avoided annual
damages ($M) ($6, $143)
Net gains from $a7
differentiation
(annual in $M) (-S7, $130)

2.5 and 97.5 percentile realizations of damage differences in parentheses.
Basis for comparison is undifferentiated policy



