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How to approximate and 
integrate high dimensional 
objects quickly and accurately



Lots of economics research on mitigation and 
tech R&D, little research on science policy
Monitoring and modeling are major 
components of climate science
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Lots of economics research on mitigation and 
tech R&D, little research on science policy
Monitoring and modeling are major 
components of climate science

Current expenditures: $2-3 billion/year, 
almost 50% of US climate change 
expenditures (GAO 2018)

What is the marginal benefit of 
funding climate science?



We estimate the value of science policy that 
helps us learn about climate sensitivity
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We estimate the value of science policy that 
helps us learn about climate sensitivity



Sparse grids
• 200 states

Hamiltonian Monte Carlo
• Nonconjugate distributions
• High dimensional Bayesian estimation

Adaptive grids / stochastic simulation
• 200 states
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Approximate time to solve this
model once with these methods:

1 million core-hours

Optimistic human time equivalent: 
1 month on UA Ocelote (~1,400 cores)

Why do we need these methods?



“The estimated range of the ECS has not changed much 

despite massive research efforts.” - Knutti et al. (2017)

Climate sensitivity: 
equilibrium warming from a doubling of CO2



1) Science is extremely valuable

Accelerating learning is worth up to:

• $100s of billions annually

• $1000s per capita lump sum today

• 1% permanent consumption gain
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1) Science is extremely valuable

Accelerating learning is worth up to:

• $100s of billions annually

• $1000s per capita lump sum today

• 1% permanent consumption gain

2) Science should be funded at large scale 
There are increasing returns to scientific information

What is the value of science policy?



The model is:
• Dynamic stochastic DICE with storage of observed histories
• Bayesian estimation routine for the temperature transition

T"#$% = T" + C1 F M"#$%, t + 10 − f
12T" − C3 T" − O" + ν"#$%6

We want the CS distribution (state of climate knowledge)

The equation doesn’t admit a closed form Markov updating rule à
we need to store observed histories, estimate generic posteriors

IAM + generalized Bayesian estimation



1) Collocation

2) Interpolation

3) Learning

4) Belief computation

5) Dynamic programming

How we do it: 5 steps



Collocation

Step 1: Make an approximation grid



We use a sparse collocation grid (Smolyak, 1963)

Intuition: Optimal scheme to minimize approximation errors with a 
given number of grid points
Delivers: polynomial complexity instead of exponential
Why: we need to store observed histories over centuries

Taking nonconjugate learning to a climate-
economy model: collocation sparsity



Interpolation

Step 2: Generate data



We use a 10 year time step for policymaking because of 
computational limitations (hundreds vs thousands of states)

This is obviously bad for learning about climate sensitivity

Solution: interpolate between 10 year histories using Brownian 
bridges + annual climate dynamics

Issue: model is way too big on a 1 year timestep



Our interpolated history
Linearly interpolate CO2 Bridge + annualized transition



Learning

Step 3: Bayes’ rule



Step 3: Bayes’ rule



Beliefs

Step 4: Hamiltonian Monte Carlo



Bayes gives us a posterior, now we need a way to approximate it 
to use it in the model

Hamiltonian Monte Carlo: new and efficient method for sampling 
high dimensional distributions

We need HMC vs MCMC because we will be estimating a ~70 
dimensional posterior (CS + data + volatility) to calibrate our model 
(e.g. Aldrin et al. 2012; Skeie et al. 2014)

We need a usable posterior for our model



We commonly take expectations by exploring the distribution 
through random walks (e.g. Metropolis-Hastings)

High dimensional spaces pose problems for random walks 

Don’t efficiently traverse the important parts of the distribution

Why? See Betancourt (2017) for details and pictures

Why HMC is the coolest



Volume scales exponentially in # of dimensions

High density regions (e.g. the distributional mode) take up smaller 
and smaller volumes as the dimensionality increases



Density vs volume tension in high dimensions

A density concentrates around its 
mode but the vast majority of 
volume is away from the mode

Contributions to the expectation  
are determined by the product of 
density and volume

We don’t need (or want) to explore 
the entire distribution



Density vs volume tension in high dimensions

The contributions are centered in 
an (small) area called the typical set

To efficiently take expectations we 
need to identify and focus on the 
typical set



It’s just physics

HMC takes standard MCMC approaches,

but informs transitions so they closely follow the typical set

How? Ideas from classical physics

The typical set is actually very similar to stable orbits à

We need enough momentum to offset gravity (gradient’s) 

pull toward Earth (the mode)



It’s just physics

Bad Bad Good

Typical set



Dynamic 
Programming

Step 5: Solve the model (twice)



The final step(s)

1) Do standard value function iteration

2) Simulate a bunch of potential state paths

• The envelope of these paths will be time dependent

3) Generate a time-dependent / adaptive grid based on the sims

4) Repeat everything once



Adaptive grids

400

800

1200

1600

2005 2030 2055 2080 2105
Year

C
um

ul
at

ive
 E

m
is

si
on

s 
Bo

un
ds

2.0

2.5

3.0

3.5

4.0

2005 2030 2055 2080 2105
Year

Ef
fe

ct
ive

 C
ap

ita
l B

ou
nd

s



Finally,
the results



Backcast the learning model to validate
Conditional on the instrumental 
record, what belief trajectory gets 
us our current prior?

Consistent with historical beliefs 
over the 140 years

Even going back to the first 
climate sensitivity estimate in 1896



The data and data estimates



Advancing climate science increases the 
informativeness of the climate signal

We model improvements in modeling/monitoring as increasing 
the strength of the climate signal in the data

This is nearly identical to the theoretical information literature
• Radner and Stiglitz (1984); Chade and Schlee (2002); 

Moscarini and Smith (2002); Keppo et al. (2009)

In practice, we reduce the volatility (unexplained variation) in 
temperature



Mean and 90% CI of beliefs 
about CS under different 
temperature volatilities

Volatility reductions accelerate 
learning, allow for better 
policymaking

Volatility as a 
fraction of 

baseline (%)

True CS

Reducing volatility accelerates learning



Annuity from reducing 
unexplained variation in 
temperature

Non-concavities (upward 
sloping demand) are consistent 
with theoretical predictions

Accelerating learning has significant value

increasing returns

decreasing returns



We estimate the gains from accelerating science
Science policy is highly valuable

Optimal funding is zero or large, 
need MC estimates for optimal funding levels

Structural and numerical models often use 
similar methods to approximate functions and distributions

These methods make high dimensional problems feasible/faster



Learn high dimensional 
optimization/approximation basics

Basis functions?
Gradient descent?
Sparse grids?
MCMC/HMC?
Julia?

https://github.com/AEM7130

https://github.com/AEM7130


Standard conjugate approach says we can 
now rule out disastrous climate sensitivity

Beliefs since the Charney
report under four different 
IAM learning models



Alternative nonconjugate learning models 
are biased in a priori nonobvious ways


