Valuing science policy:
Dynamic decisionmaking with
generalized Bayesian learning

lvan Rudik — Cornell University
Maxwell Rosenthal - Georgia Tech
Derek Lemoine — University of Arizona and NBER

TWE

LI

DS



Also known as..

lvan Rudik — Cornell University
Maxwell Rosenthal - Georgia Tech
Derek Lemoine — University of Arizona and NBER

TWEEDS



How to approximate and
Integrate high dimensional
objects quickly and accurately

lvan Rudik — Cornell University
Maxwell Rosenthal - Georgia Tech
Derek Lemoine — University of Arizona and NBER

DS

TWE

LI



Lots of economics research on mitigation and

tech R&D, little research on science pollcy

Monitoring and modeling are major
components of climate science




Lots of economics research on mitigation and

tech R&D, little research on science pollcy

Monitoring and modeling are major
components of climate science

Current expenditures: $2-3 billion/year,
almost 50% of US climate change
expenditures (GAO 2018)




Lots of economics research on mitigation and

tech R&D, little research on science pollcy

Monitoring and modeling are major
components of climate science

Current expenditures: $2-3 billion/year,
almost 50% of US climate change
expenditures (GAO 2018)

What is the marginal benefit of
funding climate science?
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Why do we need these methods?

e 200 states

* Nonconjugate distributions
* High dimensional Bayesian estimation

e 200 states
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Why do we need these methods”
Approximate time to solve this ’
model once with these methods:

1 million core-hours

Optimistic human time equivalent:
1 month on UA Ocelote (~1,400 cores)




Climate sensitivity:
equilibrium warming from a dou

F Arrhenius (1896); best estimate for different regions

- Hulburt (1931), best estimate

- Callendar (1938); best estimate

- Plass (1956); best estimate

- Moller (1963); best estimate

- Augustsson and Ramanathan (1977); range of experiments
- Charney et al, (1979); best estimate

- Lorius ef of, (1990); best estimate

- 1PCC FAR Houghton (1990)

- IPCC SAR Houghton (1995)

F Idso (1998); best estimate

- 1PCC TAR Houghton (2007); likely

- Hegerl et al. (2006); median and 90%

- Annan and Hargreaves (2006); maximum likelihood and 95%

Edwards et al. (2007)

- 1PCC AR4 Solomon et al. (2007); best estimate and 66%
- Knutti and Hegerl {2008); best estimate and 66%

I Palaeosens (2012); mean and 90%

- Skinner (2012); best estimate and ballpark

- 1PCC ARS Stocker et al. (2013); 66%

- Annan and Hargreaves (2015); best estimate and 90%

- Heydt et of. (2016); range of best estimates

- Forster (2016); mean and $0%

Loeb et al, {2016); range of estimates

- Specht et al. (2016); best estimate

- Stevens et al. (20716); 94%

- Lewis and Griinwald (2017); median and 90%
- Harde (2017); best estimate

- Andronova and Schlesinger (2001); median and 90%
- Kaufmann and Stern (2002); plausible range
- Harvey and Kaufmann (2002); most likely and favoured

Gregory et al. (2002); mode see paper for uncertainty
- Knutti et al. (2002); median and 20%

- Forest et al. (2002); mean and 90%

- Frame et al. (2005); median and 20%

- Tsushima et al. (2005); mean and standard error

Andreae et al. (2005); supported range

- Stern et al. (2006); best estimate

- Forest et al. (2006); mean and 90%

- Forster and Gregory (2006); median and 95%

- Schwartz (2007/08); mean and 1o based on time constant and heat capacity

“The estimated range of the ECS has not thaiwgéd much

bling of CO,

|- Chylek et al. (2007); 95%

I- Tomassini et gl. (2007); mean and 90%

I- Forest et al. (2008); mean and 90%

- Saniso et al. (2008); mean and 0%

I Sanso and Forest (2009); mean and 90%

- Lindzen and Choi (2009); mean and standard error
- Meinshausen et al. (2009); mode and 90%

Murphy et al. (2009); supported range from short-term observations
I Bender et al. (2010); mean and 95%
I Lin et al. (2010); best estimate see paper for uncertainty

+ Roe and Armour (2011); median and 0%

I Lindzen and Choi (2011); mean and 95%

- Huber et al. (2011); median and likely range

- Libardoni and Forest {2013); median and 90%

- Schwartz (2012); range consistent with observations and forcing estimates

I Aldrin et al. (2012); mean and 90%

I Olson et al. (2012); mode and 95%

- van Hateren (2013); mean and standard error, see paper for definitions

- Bengtsson and Schwartz (2013); best estimate and e for lower limit of sensitivity
- Lewis (2013); median and 90%

- Otto et al. (2013); median and 90% for 1970-2009

I Otto ef al. (2013); median and 0% for 2000s

= Harris et al. (2013); median and 90%

- Donchoe et al. (2014); best estimate

I Masters (2014); median and 90%

- Bodman et al. (2013); median and 90%

I Lewis (2014); median and 90%

- Schwartz et al. (2014), range consistent with observations and ARS likely forcing
- Urban et @l. (2014), median and 90%

- Lovejoy (2014); mean and standard error

- Kummer and Dessler (2014); central value and 90% see paper for uncertainty
I Skeie et a). (2014); mean and 90%

= Lewis and Curry (2015); median and 90%

- Loehle (2014), best estimate and 95%

- Cawley et al. (2015), correcting Loehle (2014); 95%

- Loehle (2015); best estimate

Marvel et ai. (2015); mean and 90%

- Johansson et al, (2015); mode and 904 for data until 1986

- Johansson &t al. (2015); mode and 90% for data until 2011

- Monckton et al, (2015); mean and consistent model paramater
= Lewis {2016); median and 90%

I Bates (2016); "in the neighborheod"

- Armour (2017), best estimate and 90%

R

despite massive research efforts.” - Knutti et al. (2017



What is the value of science policy?

1) Science is valuable
Accelerating learning is worth up to:
e $100s of billions annually
« $1000s per capita lump sum today

* 1% permanent consumption gain
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1) Science is valuable
Accelerating learning is worth up to:
e $100s of billions annually
« $1000s per capita lump sum today

* 1% permanent consumption gain

2) Science should be funded at

There are increasing returns to scientific information



|AM + generalized Bayesian estimation

The model is:
 Dynamic stochastic DICE with storage of observed histories
« Bayesian estimation routine for the temperature transition

f
Tirzo = Tp + C1 [F(Mt+10,t +10) — —T, — C3(T, — oa] 10

We want the CS distribution (state of climate knowledge)

The equation doesn’t admit a closed form Markov updating rule -
we need to store observed histories, estimate generic posteriors



How we do it: 5 steps

1) Collocation

2) Interpolation

)
)
3) Learning
4) Belief computation
)

5) Dynamic programming



Step 1: Make an approximation grid

Collocation



Taking nonconjugate learning to a climate-
economy model: collocation sparsity

We use a sparse collocation grid (Smolyak, 1963)

u=0d=2 n=1d=2 u=2d=2 u=3d=2 9x9
1 1 1 1 : 1ttt

0 . 0 . 0Ot - . . Ofs = ¢ o o o« Ote = =« . .

1 1 A 1 o R e
-1 0 1 -1 0 1 1 0 1 -1 0 1 -1 0 1

Smolyak Smolyak Smolyak Smolyak Tensor Product

Intuition: Optimal scheme to minimize approximation errors with a
given number of grid points

Delivers: polynomial complexity instead of exponential
Why: we need to store observed histories over centuries



Step 2: Generate data

Interpolation



Issue: model is way too big on a 1 year timestep

We use a 10 year time step for policymaking because of
computational limitations (hundreds vs thousands of states)

This is obviously bad for learning about climate sensitivity

interpolate between 10 year histories using Brownian
bridges + annual climate dynamics



Our interpolated history

Linearly interpolate CO, Bridge + annualized transition
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Step 3: Bayes' rule

Learning



rule

: Bayes’

Step 3

,
NS 5




Step 4: Hamiltonian Monte Carlo

Beliefs



We need a usable posterior for our model

Bayes gives us a posterior, now we need a way to approximate it
to use it in the model

new and efficient method for sampling
high dimensional distributions

We need HMC vs MCMC because we will be estimating a ~70
dimensional posterior (CS + data + volatility) to calibrate our model
(e.g. Aldrin et al. 2012; Skeie et al. 2014)



Why HMC is the coolest

We commonly take expectations by exploring the distribution
through random walks (e.g. Metropolis-Hastings)

High dimensional spaces pose problems for random walks

Don'’t efficiently traverse the important parts of the distribution

Why? See Betancourt (2017) for details and pictures



Volume scales exponentially in # of dimensions

High density regions (e.g. the distributional mode) take up smaller
and smaller volumes as the dimensionality increases



Density vs volume tension in high dimensions

A density concentrates around its Tepical
mode but the vast majority of Set
volume is away from the mode

Contributions to the expectation
are determined by the product of

density and volume (q) dq

We don’t need (or want) to explore
the entire distribution




Density vs volume tension in high dimensions

The contributions are centered in Typical | 94
an (small) area called the typical set Set

To efficiently take expectations we
need to identify and focus on the
typical set




It’s just physics

HMC takes standard MCMC approaches,

but informs transitions so they closely follow the typical set
How? ldeas from classical physics

The typical set is actually very similar to stable orbits -2

We need enough momentum to offset gravity (gradient’s)

pull toward Earth (the mode)



It’s just physics

Typical set

Bad Bad



Step 5: Solve the model (twice)

Dynamic
Programming



The final step(s)

1) Do standard value function iteration

2) Simulate a bunch of potential state paths

 The envelope of these paths will be time dependent

3) Generate a time-dependent / adaptive grid based on the sims

4) Repeat everything once



Adaptive grids
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Finally,
the results



Backcast the learning model to validate

Conditional on the instrumental
record, what belief trajectory gets
us our current prior?
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The data and data estimates
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Advancing climate science increases the
informativeness of the climate signal

We model improvements in modeling/monitoring as increasing
the strength of the climate signal in the data

This is nearly identical to the theoretical information literature

« Radner and Stiglitz (1984); Chade and Schlee (2002);
Moscarini and Smith (2002); Keppo et al. (2009)

In practice, we reduce the volatility (unexplained variation) in
temperature



Reducing volatility accelerates learning
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Accelerating learning has significant value

3000 decreasing returns LA
Annuity from reducing \
unexplained variation in R Epstein-zm/_/
temperature Ezooo
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We estimate the gains from accelerating science

Science policy is highly valuable

Optimal funding is zero or large,
need MC estimates for optimal funding levels

Structural and numerical models often use
similar methods to approximate functions and distributions

These methods make high dimensional problems feasible/faster



Learn high dimensional
optimization/approximation basics

Step 4: Construct the grid and basis matrix

Basis functions?

# Chebyshev polynomial function

M £ ti heb lys(x, n)
Gradient descent? FOEL on e AR
return 1 # T 6(x) =1
1 ? elseif n = 1

Sparse grlds * return x # T 1(x) = x

else
MCMC/H MC? cheb_recursion(x, n) =

2x.xcheb_polys.(x, n - 1) « cheb_polys.(x, n - 2)
. return cheb_recursion(x, n) # T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)
Julia? end
end;

O https://github.com/AEM7130


https://github.com/AEM7130

Standard conjugate approach says we can
now rule out disastrous climate sensitivity
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Alternative nonconjugate learning moaels
are biased in a priori nonobvious ways
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