### Machine-Learning the Impacts of Behavioral Interventions Evidence from Household Energy Use

Samuel Stolper (joint with Chris Knittel and Leila Safavi)

University of Michigan

March 30<sup>th</sup>, 2019

# Machine learning to improve program evaluation

Understanding treatment effect heterogeneity facilitates improvements to program effectiveness

- ► Can selectively target those who respond "best"
- ► Can tailor treatment where it is not having the desired effect

Our aim: use random forests to estimate the distribution of responses to a widely used behavioral nudge

► The "Home Energy Report" (HER), which aims to encourage energy efficiency

## Report objective and components

| EVERS® URCE                                                                                                            | energize CT                   |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Acct # ******3058                                                                                                      |                               |
| You used                                                                                                               | 22% more than your neighbors. |
| Efficient<br>Neighbors                                                                                                 | 504 kWh                       |
| All Neighbors                                                                                                          | 784 kWh                       |
| You                                                                                                                    | 966 kWh                       |
| Feb 28, 2017 - Mar 27, 2017<br>This comparison is based on approx. 100 nearby homes that are most similar to<br>yours. |                               |

#### Do you have a plan for saving energy?

Let us help you create one! Get started now with our free Energy Savings Plan tool, and take control of your energy use.



- · Analyze your energy use.
- Find and prioritize energy solutions tailored to your home.
- See how much you can save from energy improvements.
- · Check items off your list as you complete them



- Nudge consumers to reduce usage
- Increase customer satisfaction

- The format
  - Social comparison of usage
  - Ways to save

CREATE YOUR ENERGY SAMINGS PLAN

### Background

Some facts about HERs:

- Used by over a hundred utilities in at least nine countries
- Repeatedly been proven effective at reducing consumption on average
  ATEs: 1-2% of monthly household consumption (Allcott 2011; Ayres et al. 2013)
- Some evidence of heterogeneity in impacts
  - Allcott (2011); Costa and Kahn (2013); Allcott and Kessler (2017)

#### Context



- Eversource residential electricity customers
  - Monthly usage (kWh) from 2013-2018
  - 900k households enrolled in an experiment
    - ► 50m household-months
  - Household characteristics from Experian

## ATEs by wave: consumption



#### Event study of pooled experimental waves: consumption



## Random forest algorithm

We use the generalized random forest algorithm, developed by Wager, Tibshirani, and Athey (2018)

- ► Grow a collection of (10,000) trees using recursive partitioning
  - ► Each tree splits the sample into "leaves" defined by ranges of characteristic values
  - Splits are made to maximize cross-split differences in ATE
- Predict household i's treatment effect using a weighted average of nearest neighbors
  - Weights equal to the likelihood of being in the same leaf as household *i*

### Tree-growing procedure

- 1. Draw random 50% sample of households for use in tree-growing
  - ► Split the sample into a "training set" and an "estimation set" of equal size
- 2. Draw a random subset of household characteristics to use in splitting
  - ► This and (1) de-correlate the trees
- 3. Split the training set recursively to create a tree, whose terminal leaves identify unique, disjoint sets of characteristics
- 4. Match estimation-set households to leaves based on their characteristics
  - ► So one set is used to grow tree structure; the other is used to estimate ATEs
- 5. Estimate within-leaf ATEs

# Implementation details

#### **Parameter choices**

- Size of sample and characteristic vector drawn
- Minimum node size
- ► Imbalance limit and penalty

#### **Pre-processing:**

- Dependent variable: post pre consumption
  - ▶ Regress Y and W on characteristics and wave FE and use residuals
- ► Weights: inverse p(treatment) by wave

#### A sample tree



# Kernel density of household predictions



- Multiple distinct peaks
- Long right tail of positive treatment effects
- Peak-shifting over time

### Usage of characteristics in random forest



# Test of out-of-sample performance



- Grow forest using only half the sample
  - Predict treatment effects in hold-out sample using forest
- Regress usage on treatment X (predicted ATE quartile)
- Forest appears to do well out-of-sample

$$Y_{it} = \alpha_0 + \alpha_1 T_{it} + \sum_{j=2}^{4} \left( \alpha_j T_{iwt} * \mathbb{1}[Q_i = j] \right) + \theta_i + \omega_t + e_{it}$$

## Predicted treatment effect vs. baseline usage



- Positive treatment effects are exclusively found among households with the lowest baseline consumption
- Above bottom quartile, tight relationship breaks down

## Predicted treatment effect vs. home value



- No slope to the treatment effect - home value relationship
- But the largest drops in consumption are confined to the low end of the home value distribution

## Predicted treatment effect vs. pre-consumption residual



- "Residual" indicates consumption *relative* to an average household with similar characteristics
  - This may be correlated with social comparison messaging
- Graph suggests a "boomerang effect"
- Graph suggest a continuous relationship b/w treatment effect and residual

## Learning about machine learning

- Opower experiments span multiple states and time periods
  - ► Can we leverage this fact to test the "pace" of machine learning?
  - Examine how performance evolves as we add waves to the training set
  - Compare different prediction methods:
    - Random forests
    - LASSO
    - Traditional regression

## The "horse race" procedure

- 1. Divide waves into 3 groups, by time period
- 2. Build predictive model for the first group chronologically using each method
- 3. Predict treatment effects among HHs in next group
- 4. Estimate "actual" effects among these same HHs with diff-in-diff

Can replicate this predicted vs. actual comparison in group 3, using models built from groups 1 and 2

# Comparing predicted to actual by quartile

Multiple metrics for performance:

- 1. Relationship of actual ATE magnitude to predicted quartile
- 2. Magnitude of actual ATE in top quartile
- 3. Accuracy of predicted ATE in each quartile

## Horserace performance for Group 2



# Horserace performance for Group 3

